Innate immunity and intestinal microbiota in the development of Type 1 diabetes (original) (raw)
References
Karvonen, M., Tuomilehto, J., Libman, I. & LaPorte, R. A review of the recent epidemiological data on the worldwide incidence of type 1 (insulin-dependent) diabetes mellitus. World Health Organization DIAMOND Project Group. Diabetologia36, 883–892 (1993) ArticleCAS Google Scholar
Patterson, C. C., Dahlquist, G., Soltesz, G. & Green, A. Is childhood-onset type I diabetes a wealth-related disease? An ecological analysis of European incidence rates. Diabetologia44 (suppl. 3). B9–B16 (2001) Article Google Scholar
Pozzilli, P., Signore, A., Williams, A. J. & Beales, P. E. NOD mouse colonies around the world–recent facts and figures. Immunol. Today14, 193–196 (1993) ArticleCAS Google Scholar
McInerney, M. F., Pek, S. B. & Thomas, D. W. Prevention of insulitis and diabetes onset by treatment with complete Freund’s adjuvant in NOD mice. Diabetes40, 715–725 (1991) ArticleCAS Google Scholar
Sadelain, M. W., Qin, H. Y., Lauzon, J. & Singh, B. Prevention of type I diabetes in NOD mice by adjuvant immunotherapy. Diabetes39, 583–589 (1990) ArticleCAS Google Scholar
Janeway, C. A. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb. Symp. Quant. Biol.54, 1–13 (1989) ArticleCAS Google Scholar
Akira, S., Uematsu, S. & Takeuchi, O. Pathogen recognition and innate immunity. Cell124, 783–801 (2006) ArticleCAS Google Scholar
Rakoff-Nahoum, S., Paglino, J., Eslami-Varzaneh, F., Edberg, S. & Medzhitov, R. Recognition of commensal microflora by Toll-like receptors is required for intestinal homeostasis. Cell118, 229–241 (2004) ArticleCAS Google Scholar
Strober, W. Epithelial cells pay a Toll for protection. Nature Med.10, 898–900 (2004) ArticleCAS Google Scholar
Wong, F. S. et al. Identification of an MHC class I-restricted autoantigen in type 1 diabetes by screening an organ-specific cDNA library. Nature Med.5, 1026–1031 (1999) ArticleCAS Google Scholar
Graser, R. T. et al. Identification of a CD8 T cell that can independently mediate autoimmune diabetes development in the complete absence of CD4 T cell helper functions. J. Immunol.164, 3913–3918 (2000) ArticleCAS Google Scholar
Amrani, A. et al. Perforin-independent beta-cell destruction by diabetogenic CD8+ T lymphocytes in transgenic nonobese diabetic mice. J. Clin. Invest.103, 1201–1209 (1999) ArticleCAS Google Scholar
Haskins, K. & McDuffie, M. Acceleration of diabetes in young NOD mice with a CD4+ islet-specific T cell clone. Science249, 1433–1436 (1990) ArticleADSCAS Google Scholar
Lieberman, S. M. et al. Individual nonobese diabetic mice exhibit unique patterns of CD8+ T cell reactivity to three islet antigens, including the newly identified widely expressed dystrophia myotonica kinase. J. Immunol.173, 6727–6734 (2004) ArticleCAS Google Scholar
Lieberman, S. M. et al. Identification of the beta cell antigen targeted by a prevalent population of pathogenic CD8+ T cells in autoimmune diabetes. Proc. Natl Acad. Sci. USA100, 8384–8388 (2003) ArticleADSCAS Google Scholar
Hoglund, P. et al. Initiation of autoimmune diabetes by developmentally regulated presentation of islet cell antigens in the pancreatic lymph nodes. J. Exp. Med.189, 331–339 (1999) ArticleCAS Google Scholar
Turley, S. J., Lee, J. W., Dutton-Swain, N., Mathis, D. & Benoist, C. Endocrine self and gut non-self intersect in the pancreatic lymph nodes. Proc. Natl Acad. Sci. USA102, 17729–17733 (2005) ArticleADSCAS Google Scholar
Suzuki, T. et al. in Immune-deficient Animals in Biomedical Research (eds Rygaard, J. B. N., Graem, N. & Spang-Thomsen, M.) 112–116 (Karger, 1985) Google Scholar
Gray, D. H., Gavanescu, I., Benoist, C. & Mathis, D. Danger-free autoimmune disease in Aire-deficient mice. Proc. Natl Acad. Sci. USA104, 18193–18198 (2007) ArticleADSCAS Google Scholar
Kim, H. S. et al. Toll-like receptor 2 senses beta-cell death and contributes to the initiation of autoimmune diabetes. Immunity27, 321–333 (2007) ArticleCAS Google Scholar
Dewhirst, F. E. et al. Phylogeny of the defined murine microbiota: altered Schaedler flora. Appl. Environ. Microbiol.65, 3287–3292 (1999) CASPubMedPubMed Central Google Scholar
Ley, R. E. et al. Obesity alters gut microbial ecology. Proc. Natl Acad. Sci. USA102, 11070–11075 (2005) ArticleADSCAS Google Scholar
Ley, R. E., Turnbaugh, P. J., Klein, S. & Gordon, J. I. Microbial ecology: human gut microbes associated with obesity. Nature444, 1022–1023 (2006) ArticleADSCAS Google Scholar
Rawls, J. F., Mahowald, M. A., Ley, R. E. & Gordon, J. I. Reciprocal gut microbiota transplants from zebrafish and mice to germ-free recipients reveal host habitat selection. Cell127, 423–433 (2006) ArticleCAS Google Scholar
Ley, R. E., Peterson, D. A. & Gordon, J. I. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell124, 837–848 (2006) ArticleCAS Google Scholar
Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature444, 1027–1031 (2006) ArticleADS Google Scholar
Turnbaugh, P. J., Backhed, F., Fulton, L. & Gordon, J. I. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe3, 213–223 (2008) ArticleCAS Google Scholar
Funda, D. P., Fundova, P. & Harrison, L. C. Microflora-dependency of selected diabetes-preventive diets: germ-free and ex-germ-free monocolonized NOD mice as models for studying environmental factors in type 1 diabetes. Proc. 13th Int. Congr. Immunol. MS-11.4 16 (Brazilian Society for Immunology, Rio de Janeiro, 2007) Google Scholar
Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol.73, 5261–5267 (2007) ArticleCAS Google Scholar
Calcinaro, F. et al. Oral probiotic administration induces interleukin-10 production and prevents spontaneous autoimmune diabetes in the non-obese diabetic mouse. Diabetologia48, 1565–1575 (2005) ArticleCAS Google Scholar
Huber, T., Faulkner, G. & Hugenholtz, P. Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics20, 2317–2319 (2004) ArticleCAS Google Scholar
Petkov, P. M. et al. An efficient SNP system for mouse genome scanning and elucidating strain relationships. Genome Res.14, 1806–1811 (2004) ArticleCAS Google Scholar
Kanagawa, O., Militech, A. & Vaupel, B. A. Regulation of diabetes development by regulatory T cells in pancreatic islet antigen-specific TCR transgenic nonobese diabetic mice. J. Immunol.168, 6159–6164 (2002) ArticleCAS Google Scholar
Takaki, T. et al. Requirement for both H-2Db and H-2Kd for the induction of diabetes by the promiscuous CD8+ T cell clonotype AI4. J. Immunol.173, 2530–2541 (2004) ArticleCAS Google Scholar
Stratmann, T. et al. Susceptible MHC alleles, not background genes, select an autoimmune T cell reactivity. J. Clin. Invest.112, 902–914 (2003) ArticleCAS Google Scholar
Dojka, M. A., Hugenholtz, P., Haack, S. K. & Pace, N. R. Microbial diversity in a hydrocarbon- and chlorinated-solvent-contaminated aquifer undergoing intrinsic bioremediation. Appl. Environ. Microbiol.64, 3869–3877 (1998) CASPubMedPubMed Central Google Scholar
Weisburg, W. G., Barns, S. M., Pelletier, D. A. & Lane, D. J. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol.173, 697–703 (1991) ArticleCAS Google Scholar
Ludwig, W. et al. ARB: a software environment for sequence data. Nucleic Acids Res.32, 1363–1371 (2004) ArticleCAS Google Scholar
Lozupone, C. & Knight, R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol.71, 8228–8235 (2005) ArticleCAS Google Scholar
Lozupone, C., Hamady, M. & Knight, R. UniFrac—an online tool for comparing microbial community diversity in a phylogenetic context. BMC Bioinformatics7, 371 (2006) Article Google Scholar