The zinc-finger protein Zelda is a key activator of the early zygotic genome in Drosophila (original) (raw)
References
Newport, J. & Kirschner, M. A major developmental transition in early Xenopus embryos: II. Control of the onset of transcription. Cell30, 687–696 (1982) ArticleCASPubMed Google Scholar
Giraldez, A. J. et al. Zebrafish miR-430 promotes deadenylation and clearance of maternal mRNAs. Science312, 75–79 (2006) ArticleADSCASPubMed Google Scholar
Bushati, N., Stark, A., Brennecke, J. & Cohen, S. Temporal reciprocity of miRNAs and their targets during the maternal-to-zygotic transition in Drosophila . Curr. Biol.18, 501–506 (2008) ArticleCASPubMed Google Scholar
Tadros, W. et al. SMAUG is a major regulator of maternal mRNA destabilization in Drosophila and its translation is activated by the PAN GU kinase. Dev. Cell12, 143–155 (2007) ArticleCASPubMed Google Scholar
ten Bosch, J. R., Benavides, J. A. & Cline, T. W. The TAGteam DNA motif controls the timing of Drosophila pre-blastoderm transcription. Development133, 1967–1977 (2006) ArticleCASPubMed Google Scholar
De Renzis, S. D., Elemento, O., Tavazoie, S. & Wieschaus, E. F. Unmasking activation of the zygotic genome using chromosomal deletions in the Drosophila embryo. PLoS Biol.5, 1036–1051 (2007) ArticleCAS Google Scholar
Li, X. et al. Transcription factors bind thousands of active and inactive regions in the Drosophila blastoderm. PLoS Biol.6, 365–388 (2008) CAS Google Scholar
Jiang, J., Rushlow, C. A., Zhou, Q., Small, S. & Levine, M. Individual Dorsal morphogen binding sites mediate activation and repression in the Drosophila embryo. EMBO J.11, 3147–3154 (1992) ArticleCASPubMedPubMed Central Google Scholar
Kirov, N., Zhelnin, L., Shah, J. & Rushlow, C. Conversion of a silencer into an enhancer: evidence for a co-repressor in dorsal-mediated repression in Drosophila . EMBO J.12, 3193–3199 (1993) ArticleCASPubMedPubMed Central Google Scholar
Staudt, N., Fellert, S., Chung, H., Jäckle, H. & Vorbrüggen, G. Mutations of the Drosophila zinc finger-encoding gene vielfältig impair mitotic cell divisions and cause improper chromosome segregation. Mol. Biol. Cell17, 2356–2365 (2006) ArticleCASPubMedPubMed Central Google Scholar
Bourbon, H. M. et al. A P-insertion screen identifying novel X-linked essential genes in Drosophila . Mech. Dev.110, 71–83 (2002) ArticleCASPubMed Google Scholar
Simpson, L. & Wieschaus, E. F. Zygotic activity of the nullo locus is required to stabilize the actin-myosin network during cellularizatiron in Drosophila . Development110, 851–863 (1990) CASPubMed Google Scholar
Schweisguth, F., Lepesant, J. A. & Vincent, A. The serendipity alpha gene encodes a membrane-associated protein required for the cellularization of the Drosophila embryo. Genes Dev.4, 922–931 (1990) ArticleCASPubMed Google Scholar
Lecuit, T., Samanta, R. & Wieschaus, E. slam encodes a developmental regulator of polarized membrane growth during cleavage of the Drosophila embryo. Dev. Cell2, 425–436 (2002) ArticleCASPubMed Google Scholar
Stein, J. A., Broihier, H. T., Moor, L. A. & Lehmann, R. Slow as molasses is required for polarized membrane growth and germ cell migration in Drosophila . Development129, 3925–3934 (2002) CASPubMed Google Scholar
Grosshans, J., Müller, H. & Wieschaus, E. Control of cleavage cycles in Drosophila embryos by frühstart . Dev. Cell5, 285–294 (2003) ArticleCASPubMed Google Scholar
Robinson, D. N. & Cooley, L. Examination of the function of two kelch proteins generated by stop codon suppression. Development124, 1405–1417 (1997) CASPubMed Google Scholar
Stathopoulos, A. & Levine, M. Genomic regulatory networks and animal development. Dev. Cell9, 449–462 (2005) ArticleCASPubMed Google Scholar
Markstein, M., Markstein, P., Markstein, V. & Levine, M. S. Genome-wide analysis of clustered Dorsal binding sites identifies putative target genes in the Drosophila embryo. Proc. Natl Acad. Sci. USA99, 763–768 (2002) ArticleADSCASPubMed Google Scholar
Gross, S. P., Guo, Y., Martinez, J. E. & Welte, M. A. A determinant for directionality of organelle transport in Drosophila embryos. Curr. Biol.13, 1660–1668 (2003) ArticleCASPubMed Google Scholar
Pilot, F., Philippe, J. M., Lemmers, C., Chauvin, J. P. & Lecuit, T. Developmental control of nuclear morphogenesis and anchoring by charleston, identified in a functional genomic screen of Drosophila cellularization. Development133, 711–723 (2006) ArticleCASPubMed Google Scholar
Gunsalus, K. C. et al. Predictive models of molecular machines involved in Caenorhabditis elegans early embryogenesis. Nature436, 861–865 (2005) ArticleADSCASPubMed Google Scholar
Ryder, E. et al. The DrosDel collection: a set of P-element insertions for generating custom chromosomal aberrations in Drosophila melanogaster . Genetics167, 797–813 (2004) ArticleCASPubMedPubMed Central Google Scholar
Chou, T. B., Noll, E. & Perrimon, N. Autosomal P[ovo _D1_] dominant female-sterile insertions in Drosophila and their use in generating germ-line chimeras. Development119, 1359–1369 (1993) CASPubMed Google Scholar
Chou, T. B. & Perrimon, N. The autosomal FLP-DFS technique for generating germline mosaics in Drosophila melanogaster . Genetics144, 1673–1679 (1996) CASPubMedPubMed Central Google Scholar
Yu, Y. et al. The nuclear hormone receptor Ftz-F1 is a cofactor for the Drosophila homeodomain protein. Nature385, 552–555 (1997) ArticleADSCASPubMed Google Scholar
Kirkpatrick, H., Johnson, K. & Laughon, A. Repression of dpp targets by binding of brinker to mad sites. J. Biol. Chem.276, 18216–18222 (2001) ArticleCASPubMed Google Scholar