MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts (original) (raw)

References

  1. Ambros, V. The functions of animal microRNAs. Nature 431, 350–355 (2004)
    Article ADS CAS Google Scholar
  2. Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004)
    Article CAS Google Scholar
  3. Mi, S. et al. MicroRNA expression signatures accurately discriminate acute lymphoblastic leukemia from acute myeloid leukemia. Proc. Natl Acad. Sci. USA 104, 19971–19976 (2007)
    Article ADS CAS Google Scholar
  4. He, L. et al. A microRNA component of the p53 tumour suppressor network. Nature 447, 1130–1134 (2007)
    Article ADS CAS Google Scholar
  5. Huang, J. et al. Cellular microRNAs contribute to HIV-1 latency in resting primary CD4+ T lymphocytes. Nature Med. 13, 1241–1247 (2007)
    Article CAS Google Scholar
  6. Care, A. et al. MicroRNA-133 controls cardiac hypertrophy. Nature Med. 13, 613–618 (2007)
    Article CAS Google Scholar
  7. van Rooij, E. et al. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 316, 575–579 (2007)
    Article ADS CAS Google Scholar
  8. Yang, B. et al. The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nature Med. 13, 486–491 (2007)
    Article CAS Google Scholar
  9. Zhao, Y. et al. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell 129, 303–317 (2007)
    Article CAS Google Scholar
  10. Sayed, D., Hong, C., Chen, I. Y., Lypowy, J. & Abdellatif, M. MicroRNAs play an essential role in the development of cardiac hypertrophy. Circ. Res. 100, 416–424 (2007)
    Article CAS Google Scholar
  11. Engelhardt, S., Hein, L., Wiesmann, F. & Lohse, M. J. Progressive hypertrophy and heart failure in β1-adrenergic receptor transgenic mice. Proc. Natl Acad. Sci. USA 96, 7059–7064 (1999)
    Article ADS CAS Google Scholar
  12. Cheng, Y. H. et al. MicroRNAs are aberrantly expressed in hypertrophic heart — do they play a role in cardiac hypertrophy? Am. J. Pathol. 170, 1831–1840 (2007)
    Article CAS Google Scholar
  13. Tatsuguchi, M. et al. Expression of microRNAs is dynamically regulated during cardiomyocyte hypertrophy. J. Mol. Cell. Cardiol. 42, 1137–1141 (2007)
    Article CAS Google Scholar
  14. Sayed, D. et al. MicroRNA-21 targets Sprouty2 and promotes cellular outgrowths. Mol. Biol. Cell 19, 3272–3282 (2008)
    Article CAS Google Scholar
  15. Rockman, H. A. et al. Segregation of atrial-specific and inducible expression of an atrial natriuretic factor transgene in an in vivo murine model of cardiac hypertrophy. Proc. Natl Acad. Sci. USA 88, 8277–8281 (1991)
    Article ADS CAS Google Scholar
  16. Kudej, R. K. et al. Effects of chronic β-adrenergic receptor stimulation in mice. J. Mol. Cell. Cardiol. 29, 2735–2746 (1997)
    Article CAS Google Scholar
  17. Dudley, D. T., Pang, L., Decker, S. J., Bridges, A. J. & Saltiel, A. R. A synthetic inhibitor of the mitogen-activated protein kinase cascade. Proc. Natl Acad. Sci. USA 92, 7686–7689 (1995)
    Article ADS CAS Google Scholar
  18. Pages, G. et al. Mitogen-activated protein kinases p42mapk and p44mapk are required for fibroblast proliferation. Proc. Natl Acad. Sci. USA 90, 8319–8323 (1993)
    Article ADS CAS Google Scholar
  19. Hanafusa, H., Torii, S., Yasunaga, T. & Nishida, E. Sprouty1 and Sprouty2 provide a control mechanism for the Ras/MAPK signalling pathway. Nature Cell Biol. 4, 850–858 (2002)
    Article CAS Google Scholar
  20. Casci, T., Vinos, J. & Freeman, M. Sprouty, an intracellular inhibitor of Ras signaling. Cell 96, 655–665 (1999)
    Article CAS Google Scholar
  21. Basson, M. A. et al. Sprouty1 is a critical regulator of GDNF/RET-mediated kidney induction. Dev. Cell 8, 229–239 (2005)
    Article CAS Google Scholar
  22. Krutzfeldt, J. et al. Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438, 685–689 (2005)
    Article ADS Google Scholar
  23. Castoldi, M. et al. A sensitive array for microRNA expression profiling (miChip) based on locked nucleic acids (LNA). RNA 12, 913–920 (2006)
    Article CAS Google Scholar
  24. Thum, T. et al. MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure. Circulation 116, 258–267 (2007)
    Article CAS Google Scholar
  25. Buitrago, M. et al. The transcriptional repressor Nab1 is a specific regulator of pathological cardiac hypertrophy. Nature Med. 11, 837–844 (2005)
    Article CAS Google Scholar
  26. Thum, T. & Borlak, J. Mechanistic role of cytochrome P450 monooxygenases in oxidized low-density lipoprotein-induced vascular injury: therapy through LOX-1 receptor antagonism? Circ. Res. 94, e1–e13 (2004)
    Article CAS Google Scholar
  27. Kissler, S. et al. In vivo RNA interference demonstrates a role for Nramp1 in modifying susceptibility to type 1 diabetes. Nature Genet. 38, 479–483 (2006)
    Article CAS Google Scholar
  28. Li, X., Wang, W. D. & Lufkin, T. Dicistronic LacZ and alkaline phosphatase reporter constructs permit simultaneous histological analysis of expression from multiple transgenes. Biotechniques 23, 874–878 (1997)
    Article CAS Google Scholar
  29. Lewandoski, M., Meyers, E. N. & Martin, G. R. Analysis of Fgf8 gene function in vertebrate development. Cold Spring Harb. Symp. Quant. Biol. 62, 159–168 (1997)
    Article CAS Google Scholar
  30. Merkle, S. et al. A role for caspase-1 in heart failure. Circ. Res. 100, 645–653 (2007)
    Article CAS Google Scholar

Download references

Acknowledgements

We thank N. Hemmrich, U. Keller, J. Schittl, C. Dienesch, S. Thum, A. Leupold, M. Kümmel, S. Schraut, A. Lauer, S. Marquart, E. Leich and A. Horn for technical assistance. We acknowledge the contribution of V. Benes and S. Schmidt (miChip microarray Platform, EMBL), D. Fraccarollo and K. Hu (in vivo studies), S. Leierseder and X. Loyer (primary fibroblast preparation), C. Sohn-Lee (in situ hybridization experiments) and M. Manoharan, R. Braich and B. Bhat (antagomir oligonucleotides). We also thank L. Field, T. Brand and M. Gessler for discussions. This work was supported in part by grants from the IZKF (E-31 to T. Thum), the Deutsche Forschungsgemeinschaft (DFG TH903/7-1 to T. Thum and J.B.), the Rudolf Virchow Center/DFG Research Center for Experimental Biomedicine (S.E., S.K.), the Bavarian Ministry of Technology, ProCorde and Sanofi-Aventis (S.E.), and the US NIH (R01 CA78711 to G.R.M.). M.C. is supported by an Excellence Fellowship of The Medical Faculty of the University of Heidelberg, M.U.M. by a Cancer Research Net grant (BMBF (NGFN) 201GS0450), and M.B. by the Leopoldina Academy (BMBF-LPD 9901/8-141).

Author Contributions T. Thum, C.G., J.F., T.F., S.K., M.B., P.G., S.J., M.C. and S.E. performed experiments. M.A.B and J.D.L. provided the Spry/LacZ mouse line. J.T.R.P., S.H.R. and T. Tuschl contributed the in situ hybridization experiments. T. Thum, C.G., J.F., W.R., S.F., J.S., V.K., A.R., M.M., G.R.M., J.B. and S.E. analysed data. T. Thum, J.B. and S.E. designed the study. T. Thum, G.R.M., J.B. and S.E. wrote the manuscript. J.B. and S.E. contributed equally as joint senior authors to the study.

Author information

Author notes

  1. Thomas Thum and Carina Gross: These authors contributed equally to this work.

Authors and Affiliations

  1. Department of Medicine I,,
    Thomas Thum, Jan Fiedler, Paolo Galuppo, Stefan Frantz & Johann Bauersachs
  2. Junior Research Group, Interdisziplinäres Zentrum für Klinische Forschung (IZKF),
    Thomas Thum & Jan Fiedler
  3. Rudolf Virchow Center, Deutsche Forschungsgemeinschaft (DFG) Research Center for Experimental Biomedicine,,
    Carina Gross, Thomas Fischer, Stephan Kissler & Stefan Engelhardt
  4. Institute of Pathology, University of Wuerzburg, 97080 Wuerzburg, Germany ,
    Andreas Rosenwald
  5. Department of Anatomy, University of California, San Francisco, California 94158, USA,
    Markus Bussen & Gail R. Martin
  6. Department of Internal Medicine III,,
    Steffen Just & Wolfgang Rottbauer
  7. Department of Pediatric Hematology, Oncology and Immunology,
    Mirco Castoldi & Martina U. Muckenthaler
  8. Molecular Medicine Partnership Unit, University of Heidelberg, 69120 Heidelberg, Germany
    Mirco Castoldi & Martina U. Muckenthaler
  9. Regulus Therapeutics, Carlsbad, California 92008, USA ,
    Jürgen Soutschek
  10. Alnylam Pharmaceuticals, Cambridge, Massachusetts 02142, USA ,
    Victor Koteliansky
  11. Department of Craniofacial Development, King’s College, London SE1 9RT, UK
    M. Albert Basson
  12. Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA ,
    Jonathan D. Licht
  13. Laboratory of RNA Molecular Biology, Rockefeller University, New York, New York 10065, USA ,
    John T. R. Pena, Sara H. Rouhanifard & Thomas Tuschl
  14. Institute of Pharmacology and Toxicology, Technische Universitaet Muenchen (TUM), 80802 Muenchen, Germany
    Stefan Engelhardt

Authors

  1. Thomas Thum
    You can also search for this author inPubMed Google Scholar
  2. Carina Gross
    You can also search for this author inPubMed Google Scholar
  3. Jan Fiedler
    You can also search for this author inPubMed Google Scholar
  4. Thomas Fischer
    You can also search for this author inPubMed Google Scholar
  5. Stephan Kissler
    You can also search for this author inPubMed Google Scholar
  6. Markus Bussen
    You can also search for this author inPubMed Google Scholar
  7. Paolo Galuppo
    You can also search for this author inPubMed Google Scholar
  8. Steffen Just
    You can also search for this author inPubMed Google Scholar
  9. Wolfgang Rottbauer
    You can also search for this author inPubMed Google Scholar
  10. Stefan Frantz
    You can also search for this author inPubMed Google Scholar
  11. Mirco Castoldi
    You can also search for this author inPubMed Google Scholar
  12. Jürgen Soutschek
    You can also search for this author inPubMed Google Scholar
  13. Victor Koteliansky
    You can also search for this author inPubMed Google Scholar
  14. Andreas Rosenwald
    You can also search for this author inPubMed Google Scholar
  15. M. Albert Basson
    You can also search for this author inPubMed Google Scholar
  16. Jonathan D. Licht
    You can also search for this author inPubMed Google Scholar
  17. John T. R. Pena
    You can also search for this author inPubMed Google Scholar
  18. Sara H. Rouhanifard
    You can also search for this author inPubMed Google Scholar
  19. Martina U. Muckenthaler
    You can also search for this author inPubMed Google Scholar
  20. Thomas Tuschl
    You can also search for this author inPubMed Google Scholar
  21. Gail R. Martin
    You can also search for this author inPubMed Google Scholar
  22. Johann Bauersachs
    You can also search for this author inPubMed Google Scholar
  23. Stefan Engelhardt
    You can also search for this author inPubMed Google Scholar

Corresponding authors

Correspondence toJohann Bauersachs or Stefan Engelhardt.

Ethics declarations

Competing interests

T. Thum, C.G., J.B. and S.E. have submitted a patent application on the use of microRNAs in heart disease.

Supplementary information

Supplementary Information

This file contains Supplementary Figures S1-S9 and Supplementary Tables S1-S2 with accompanying legends. (PDF 1615 kb)

PowerPoint slides

Rights and permissions

About this article

Cite this article

Thum, T., Gross, C., Fiedler, J. et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts.Nature 456, 980–984 (2008). https://doi.org/10.1038/nature07511

Download citation