Illumination controls differentiation of dopamine neurons regulating behaviour (original) (raw)

References

  1. Walicke, P. A. & Patterson, P. H. On the role of Ca2+ in the transmitter choice made by cultured sympathetic neurons. J. Neurosci. 1, 343–350 (1981)
    Article CAS Google Scholar
  2. Brosenitsch, T. A. & Katz, D. M. Expression of Phox2 transcription factors and induction of the dopaminergic phenotype in primary sensory neurons. Mol. Cell. Neurosci. 20, 447–457 (2002)
    Article CAS Google Scholar
  3. Borodinsky, L. N. et al. Activity-dependent homeostatic specification of transmitter expression in embryonic neurons. Nature 429, 523–530 (2004)
    Article ADS CAS Google Scholar
  4. Gomez-Lira, G., Lamas, M., Romo-Parra, H. & Gutierrez, R. Programmed and induced phenotype of the hippocampal granule cells. J. Neurosci. 25, 6939–6946 (2005)
    Article CAS Google Scholar
  5. Catalano, S. M., Chang, C. K. & Shatz, C. J. Activity-dependent regulation of NMDAR1 immunoreactivity in the developing visual cortex. J. Neurosci. 17, 8376–8390 (1997)
    Article CAS Google Scholar
  6. Kidd, F. L. & Isaac, J. T. R. Developmental and activity-dependent regulation of kainate receptors at thalamocortical synapses. Nature 400, 569–573 (1999)
    Article ADS CAS Google Scholar
  7. Shi, J., Townsend, M. & Constantine-Paton, M. Activity-dependent induction of tonic calcineurin activity mediates a rapid developmental downregulation of NMDA receptor currents. Neuron 28, 103–114 (2000)
    Article CAS Google Scholar
  8. Brunelli, G. et al. Glutamatergic reinnervation through peripheral nerve graft dictates assembly of glutamatergic synapses at rat skeletal muscle. Proc. Natl Acad. Sci. USA 102, 8752–8757 (2005)
    Article ADS CAS Google Scholar
  9. Borodinsky, L. N. & Spitzer, N. C. Activity-dependent neurotransmitter-receptor matching at the neuromuscular junction. Proc. Natl Acad. Sci. USA 104, 335–340 (2007)
    Article ADS CAS Google Scholar
  10. Fletcher, C. F. et al. Absence epilepsy in tottering mutant mice is associated with calcium channel defects. Cell 87, 607–617 (1996)
    Article CAS Google Scholar
  11. Hess, E. J. & Wilson, M. C. Tottering and leaner mutations perturb transient developmental expression of tyrosine-hydroxylase in embryologically distinct Purkinje-cells. Neuron 6, 123–132 (1991)
    Article CAS Google Scholar
  12. Ubink, R., Tuinhof, R. & Roubos, E. W. Identification of suprachiasmatic melanotrope-inhibiting neurons in Xenopus laevis: A confocal laser-scanning microscopy study. J. Comp. Neurol. 397, 60–68 (1998)
    Article CAS Google Scholar
  13. Tuinhof, R. et al. Involvement of retinohypothalamic input, suprachiasmatic nucleus, magnocellular nucleus and locus-coeruleus in control of melanotrope cells of Xenopus-laevis — a retrograde and anterograde tracing study. Neuroscience 61, 411–420 (1994)
    Article CAS Google Scholar
  14. Kramer, B. M. R. et al. Dynamics and plasticity of peptidergic control centres in the retino–brain–pituitary system of Xenopus laevis . Microsc. Res. Tech. 54, 188–199 (2001)
    Article ADS CAS Google Scholar
  15. Kolk, S. M., Berghs, C., Vaudry, H., Verhage, M. & Roubos, E. W. Physiological control of Xunc18 expression in neuroendocrine melanotrope cells of Xenopus laevis . Endocrinology 142, 1950–1957 (2001)
    Article CAS Google Scholar
  16. Abizaid, A., Horvath, B., Keefe, D. L., Leranth, C. & Horvath, T. L. Direct visual and circadian pathways target neuroendocrine cells in primates. Eur. J. Neurosci. 20, 2767–2776 (2004)
    Article Google Scholar
  17. Logan, D. W., Burn, S. F. & Jackson, I. J. Regulation of pigmentation in zebrafish melanophores. Pigment Cell Res. 19, 206–213 (2006)
    Article CAS Google Scholar
  18. Roubos, E. W., Scheenen, W. & Jenks, B. G. in Trends in Comparative Endocrinology and Neurobiology 172–183. (2005)
    Google Scholar
  19. Nordland, J. J. et al. The Pigmentary System: Physiology and Pathophysiology (Oxford Univ. Press, 2006)
    Book Google Scholar
  20. Tonosaki, Y., Nishiyama, K., Honda, T., Ozaki, N. & Sugiura, Y. D-2-like dopamine-receptor mediates dopaminergic or gamma-aminobutyric acidergic inhibition of melanotropin-releasing hormone release from the pars intermedia in frogs (Rana-nigromaculata). Endocrinology 136, 5260–5265 (1995)
    Article CAS Google Scholar
  21. Akopian, A. & Witkovsky, P. D2 dopamine receptor-mediated inhibition of a hyperpolarization-activated current in rod photoreceptors. J. Neurophysiol. 76, 1828–1835 (1996)
    Article CAS Google Scholar
  22. Wang, Y., Harsanyi, K. & Mangel, S. C. Endogenous activation of dopamine D2 receptors regulates dopamine release in the fish retina. J. Neurophysiol. 78, 439–449 (1997)
    Article CAS Google Scholar
  23. Li, L. & Dowling, J. E. Effects of dopamine depletion on visual sensitivity of zebrafish. J. Neurosci. 20, 1893–1903 (2000)
    Article CAS Google Scholar
  24. Green, C. B., Liang, M. Y., Steenhard, B. M. & Besharse, J. C. Ontogeny of circadian and light regulation of melatonin release in Xenopus laevis embryos. Dev. Brain Res. 117, 109–116 (1999)
    Article CAS Google Scholar
  25. Mastick, G. S. & Andrews, G. L. Pax6 regulates the identity of embryonic diencephalic neurons. Mol. Cell. Neurosci. 17, 190–207 (2001)
    Article CAS Google Scholar
  26. Wullimann, M. F. & Rink, E. Detailed immunohistology of Pax6 protein and tyrosine hydroxylase in the early zebrafish brain suggests role of Pax6 gene in development of dopaminergic diencephalic neurons. Dev. Brain Res. 131, 173–191 (2001)
    Article CAS Google Scholar
  27. Vazquez-Martinez, R. et al. Melanotrope cell plasticity: a key mechanism for the physiological adaptation to background color changes. Endocrinology 142, 3060–3067 (2001)
    Article CAS Google Scholar
  28. Berghs, C., Tanaka, S., VanStrien, F. J. C., Kurabuchi, S. & Roubos, E. W. The secretory granule and pro-opiomelanocortin processing in Xenopus melanotrope cells during background adaptation. J. Histochem. Cytochem. 45, 1673–1682 (1997)
    Article CAS Google Scholar
  29. Zhang, H. et al. Calcium channel kinetics of melanotrope cells in Xenopus laevis depend on environmental stimulation. Gen. Comp. Endocrinol. 156, 104–112 (2008)
    Article CAS Google Scholar
  30. Jenks, B. G., Kidane, A. H., Scheenen, W. & Roubos, E. W. Plasticity in the melanotrope neuroendocrine interface of Xenopus laevis . Neuroendocrinology 85, 177–185 (2007)
    Article CAS Google Scholar
  31. Lam, C. S., Korzh, V. & Strahle, U. Zebrafish embryos are susceptible to the dopaminergic neurotoxin MPTP. Eur. J. Neurosci. 21, 1758–1762 (2005)
    Article Google Scholar
  32. McKinley, E. T. et al. Neuroprotection of MPTP-induced toxicity in zebrafish dopaminergic neurons. Brain Res. Mol. Brain Res. 141, 128–137 (2005)
    Article CAS Google Scholar
  33. Olive, S., Rougon, G., Pierre, K. & Theodosis, D. T. Expression of a glycosyl phosphatidylinositol-anchored adhesion molecule, the glycoprotein F3, in the adult rat hypothalamoneurohypophyseal system. Brain Res. 689, 271–280 (1995)
    Article CAS Google Scholar
  34. El Majdoubi, M., Poulain, D. A. & Theodosis, D. T. Activity-dependent morphological synaptic plasticity in an adult neurosecretory system: magnocellular oxytocin neurons of the hypothalamus. Biochem. Cell Biol. 78, 317–327 (2000)
    Article CAS Google Scholar
  35. Mueller, N. K., Di, S., Paden, C. M. & Herman, J. P. Activity-dependent modulation of neurotransmitter innervation to vasopressin neurons of the supraoptic nucleus. Endocrinology 146, 348–354 (2005)
    Article CAS Google Scholar
  36. Froemke, R. C., Merzenich, M. M. & Schreiner, C. E. A synaptic memory trace for cortical receptive field plasticity. Nature 450, 425–429 (2007)
    Article ADS CAS Google Scholar
  37. Lam, R. W. & Levitan, R. D. Pathophysiology of seasonal affective disorder: a review. J. Psychiatry Neurosci. 25, 469–480 (2000)
    CAS PubMed PubMed Central Google Scholar
  38. Lam, R. W. & Levitt, A. J. Canadian Consensus Guidelines for the Treatment of Seasonal Affective Disorder (Clinical and Academic Publishing, 1999)
    Google Scholar
  39. Lam, R. W., Tam, E. M., Grewal, A. & Yatham, L. N. Effects of α-methyl-para-tyrosine-induced catecholamine depletion in patients with seasonal affective disorder in summer remission. Neuropsychopharmacology 25, S97–S101 (2001)
    Article CAS Google Scholar
  40. Michel, S., Itri, J. & Colwell, C. S. Excitatory mechanisms in the suprachiasmatic nucleus: the role of AMPA/KA glutamate receptors. J. Neurophysiol. 88, 817–828 (2002)
    Article CAS Google Scholar
  41. Baquet, Z. C., Bickford, P. C. & Jones, K. R. Brain-derived neurotrophic factor is required for the establishment of the proper number of dopaminergic neurons in the substantia nigra pars compActa. J. Neurosci. 25, 6251–6259 (2005)
    Article CAS Google Scholar
  42. McFarlane, S., McNeill, L. & Holt, C. E. FGF signaling and target recognition in the developing Xenopus visual system. Neuron 15, 1017–1028 (1995)
    Article CAS Google Scholar
  43. Kim, J. et al. A microRNA feedback circuit in midbrain dopamine neurons. Science 317, 1220–1224 (2007)
    Article ADS CAS Google Scholar
  44. Goridis, C. & Rohrer, H. Specification of catecholaminergic and serotonergic neurons. Nature Rev. Neurosci. 3, 531–541 (2002)
    Article CAS Google Scholar
  45. Obernosterer, G., Martinez, J. & Alenius, M. Locked nucleic acid-based in situ detection of microRNAs in mouse tissue sections. Nature Protocols 2, 1508–1514 (2007)
    Article CAS Google Scholar
  46. Gonzalez, A. & Smeets, W. Comparative analysis of dopamine and tyrosine hydroxylase immunoreactivities in the brain of 2 amphibians, the anuran Rana ridibunda and the urodele Pleurodeles waltlii . J. Comp. Neurol. 303, 457–477 (1991)
    Article CAS Google Scholar

Download references