Illumination controls differentiation of dopamine neurons regulating behaviour (original) (raw)
References
Walicke, P. A. & Patterson, P. H. On the role of Ca2+ in the transmitter choice made by cultured sympathetic neurons. J. Neurosci.1, 343–350 (1981) ArticleCAS Google Scholar
Brosenitsch, T. A. & Katz, D. M. Expression of Phox2 transcription factors and induction of the dopaminergic phenotype in primary sensory neurons. Mol. Cell. Neurosci.20, 447–457 (2002) ArticleCAS Google Scholar
Borodinsky, L. N. et al. Activity-dependent homeostatic specification of transmitter expression in embryonic neurons. Nature429, 523–530 (2004) ArticleADSCAS Google Scholar
Gomez-Lira, G., Lamas, M., Romo-Parra, H. & Gutierrez, R. Programmed and induced phenotype of the hippocampal granule cells. J. Neurosci.25, 6939–6946 (2005) ArticleCAS Google Scholar
Catalano, S. M., Chang, C. K. & Shatz, C. J. Activity-dependent regulation of NMDAR1 immunoreactivity in the developing visual cortex. J. Neurosci.17, 8376–8390 (1997) ArticleCAS Google Scholar
Kidd, F. L. & Isaac, J. T. R. Developmental and activity-dependent regulation of kainate receptors at thalamocortical synapses. Nature400, 569–573 (1999) ArticleADSCAS Google Scholar
Shi, J., Townsend, M. & Constantine-Paton, M. Activity-dependent induction of tonic calcineurin activity mediates a rapid developmental downregulation of NMDA receptor currents. Neuron28, 103–114 (2000) ArticleCAS Google Scholar
Brunelli, G. et al. Glutamatergic reinnervation through peripheral nerve graft dictates assembly of glutamatergic synapses at rat skeletal muscle. Proc. Natl Acad. Sci. USA102, 8752–8757 (2005) ArticleADSCAS Google Scholar
Borodinsky, L. N. & Spitzer, N. C. Activity-dependent neurotransmitter-receptor matching at the neuromuscular junction. Proc. Natl Acad. Sci. USA104, 335–340 (2007) ArticleADSCAS Google Scholar
Fletcher, C. F. et al. Absence epilepsy in tottering mutant mice is associated with calcium channel defects. Cell87, 607–617 (1996) ArticleCAS Google Scholar
Hess, E. J. & Wilson, M. C. Tottering and leaner mutations perturb transient developmental expression of tyrosine-hydroxylase in embryologically distinct Purkinje-cells. Neuron6, 123–132 (1991) ArticleCAS Google Scholar
Ubink, R., Tuinhof, R. & Roubos, E. W. Identification of suprachiasmatic melanotrope-inhibiting neurons in Xenopus laevis: A confocal laser-scanning microscopy study. J. Comp. Neurol.397, 60–68 (1998) ArticleCAS Google Scholar
Tuinhof, R. et al. Involvement of retinohypothalamic input, suprachiasmatic nucleus, magnocellular nucleus and locus-coeruleus in control of melanotrope cells of Xenopus-laevis — a retrograde and anterograde tracing study. Neuroscience61, 411–420 (1994) ArticleCAS Google Scholar
Kramer, B. M. R. et al. Dynamics and plasticity of peptidergic control centres in the retino–brain–pituitary system of Xenopus laevis . Microsc. Res. Tech.54, 188–199 (2001) ArticleADSCAS Google Scholar
Kolk, S. M., Berghs, C., Vaudry, H., Verhage, M. & Roubos, E. W. Physiological control of Xunc18 expression in neuroendocrine melanotrope cells of Xenopus laevis . Endocrinology142, 1950–1957 (2001) ArticleCAS Google Scholar
Abizaid, A., Horvath, B., Keefe, D. L., Leranth, C. & Horvath, T. L. Direct visual and circadian pathways target neuroendocrine cells in primates. Eur. J. Neurosci.20, 2767–2776 (2004) Article Google Scholar
Logan, D. W., Burn, S. F. & Jackson, I. J. Regulation of pigmentation in zebrafish melanophores. Pigment Cell Res.19, 206–213 (2006) ArticleCAS Google Scholar
Roubos, E. W., Scheenen, W. & Jenks, B. G. in Trends in Comparative Endocrinology and Neurobiology 172–183. (2005) Google Scholar
Nordland, J. J. et al. The Pigmentary System: Physiology and Pathophysiology (Oxford Univ. Press, 2006) Book Google Scholar
Tonosaki, Y., Nishiyama, K., Honda, T., Ozaki, N. & Sugiura, Y. D-2-like dopamine-receptor mediates dopaminergic or gamma-aminobutyric acidergic inhibition of melanotropin-releasing hormone release from the pars intermedia in frogs (Rana-nigromaculata). Endocrinology136, 5260–5265 (1995) ArticleCAS Google Scholar
Akopian, A. & Witkovsky, P. D2 dopamine receptor-mediated inhibition of a hyperpolarization-activated current in rod photoreceptors. J. Neurophysiol.76, 1828–1835 (1996) ArticleCAS Google Scholar
Wang, Y., Harsanyi, K. & Mangel, S. C. Endogenous activation of dopamine D2 receptors regulates dopamine release in the fish retina. J. Neurophysiol.78, 439–449 (1997) ArticleCAS Google Scholar
Li, L. & Dowling, J. E. Effects of dopamine depletion on visual sensitivity of zebrafish. J. Neurosci.20, 1893–1903 (2000) ArticleCAS Google Scholar
Green, C. B., Liang, M. Y., Steenhard, B. M. & Besharse, J. C. Ontogeny of circadian and light regulation of melatonin release in Xenopus laevis embryos. Dev. Brain Res.117, 109–116 (1999) ArticleCAS Google Scholar
Mastick, G. S. & Andrews, G. L. Pax6 regulates the identity of embryonic diencephalic neurons. Mol. Cell. Neurosci.17, 190–207 (2001) ArticleCAS Google Scholar
Wullimann, M. F. & Rink, E. Detailed immunohistology of Pax6 protein and tyrosine hydroxylase in the early zebrafish brain suggests role of Pax6 gene in development of dopaminergic diencephalic neurons. Dev. Brain Res.131, 173–191 (2001) ArticleCAS Google Scholar
Vazquez-Martinez, R. et al. Melanotrope cell plasticity: a key mechanism for the physiological adaptation to background color changes. Endocrinology142, 3060–3067 (2001) ArticleCAS Google Scholar
Berghs, C., Tanaka, S., VanStrien, F. J. C., Kurabuchi, S. & Roubos, E. W. The secretory granule and pro-opiomelanocortin processing in Xenopus melanotrope cells during background adaptation. J. Histochem. Cytochem.45, 1673–1682 (1997) ArticleCAS Google Scholar
Zhang, H. et al. Calcium channel kinetics of melanotrope cells in Xenopus laevis depend on environmental stimulation. Gen. Comp. Endocrinol.156, 104–112 (2008) ArticleCAS Google Scholar
Jenks, B. G., Kidane, A. H., Scheenen, W. & Roubos, E. W. Plasticity in the melanotrope neuroendocrine interface of Xenopus laevis . Neuroendocrinology85, 177–185 (2007) ArticleCAS Google Scholar
Lam, C. S., Korzh, V. & Strahle, U. Zebrafish embryos are susceptible to the dopaminergic neurotoxin MPTP. Eur. J. Neurosci.21, 1758–1762 (2005) Article Google Scholar
McKinley, E. T. et al. Neuroprotection of MPTP-induced toxicity in zebrafish dopaminergic neurons. Brain Res. Mol. Brain Res.141, 128–137 (2005) ArticleCAS Google Scholar
Olive, S., Rougon, G., Pierre, K. & Theodosis, D. T. Expression of a glycosyl phosphatidylinositol-anchored adhesion molecule, the glycoprotein F3, in the adult rat hypothalamoneurohypophyseal system. Brain Res.689, 271–280 (1995) ArticleCAS Google Scholar
El Majdoubi, M., Poulain, D. A. & Theodosis, D. T. Activity-dependent morphological synaptic plasticity in an adult neurosecretory system: magnocellular oxytocin neurons of the hypothalamus. Biochem. Cell Biol.78, 317–327 (2000) ArticleCAS Google Scholar
Mueller, N. K., Di, S., Paden, C. M. & Herman, J. P. Activity-dependent modulation of neurotransmitter innervation to vasopressin neurons of the supraoptic nucleus. Endocrinology146, 348–354 (2005) ArticleCAS Google Scholar
Froemke, R. C., Merzenich, M. M. & Schreiner, C. E. A synaptic memory trace for cortical receptive field plasticity. Nature450, 425–429 (2007) ArticleADSCAS Google Scholar
Lam, R. W. & Levitan, R. D. Pathophysiology of seasonal affective disorder: a review. J. Psychiatry Neurosci.25, 469–480 (2000) CASPubMedPubMed Central Google Scholar
Lam, R. W. & Levitt, A. J. Canadian Consensus Guidelines for the Treatment of Seasonal Affective Disorder (Clinical and Academic Publishing, 1999) Google Scholar
Lam, R. W., Tam, E. M., Grewal, A. & Yatham, L. N. Effects of α-methyl-para-tyrosine-induced catecholamine depletion in patients with seasonal affective disorder in summer remission. Neuropsychopharmacology25, S97–S101 (2001) ArticleCAS Google Scholar
Michel, S., Itri, J. & Colwell, C. S. Excitatory mechanisms in the suprachiasmatic nucleus: the role of AMPA/KA glutamate receptors. J. Neurophysiol.88, 817–828 (2002) ArticleCAS Google Scholar
Baquet, Z. C., Bickford, P. C. & Jones, K. R. Brain-derived neurotrophic factor is required for the establishment of the proper number of dopaminergic neurons in the substantia nigra pars compActa. J. Neurosci.25, 6251–6259 (2005) ArticleCAS Google Scholar
McFarlane, S., McNeill, L. & Holt, C. E. FGF signaling and target recognition in the developing Xenopus visual system. Neuron15, 1017–1028 (1995) ArticleCAS Google Scholar
Kim, J. et al. A microRNA feedback circuit in midbrain dopamine neurons. Science317, 1220–1224 (2007) ArticleADSCAS Google Scholar
Goridis, C. & Rohrer, H. Specification of catecholaminergic and serotonergic neurons. Nature Rev. Neurosci.3, 531–541 (2002) ArticleCAS Google Scholar
Obernosterer, G., Martinez, J. & Alenius, M. Locked nucleic acid-based in situ detection of microRNAs in mouse tissue sections. Nature Protocols2, 1508–1514 (2007) ArticleCAS Google Scholar
Gonzalez, A. & Smeets, W. Comparative analysis of dopamine and tyrosine hydroxylase immunoreactivities in the brain of 2 amphibians, the anuran Rana ridibunda and the urodele Pleurodeles waltlii . J. Comp. Neurol.303, 457–477 (1991) ArticleCAS Google Scholar