Photon capture and signalling by melanopsin retinal ganglion cells (original) (raw)

References

  1. Hankins, M. W., Peirson, S. N. & Foster, R. G. Melanopsin: an exciting photopigment. Trends Neurosci. 31, 27–36 (2008)
    Article CAS Google Scholar
  2. Berson, D. M., Dunn, F. A. & Takao, M. Phototransduction by retinal ganglion cells that set the circadian clock. Science 295, 1070–1073 (2002)
    Article ADS CAS Google Scholar
  3. Hattar, S., Liao, H. W., Takao, M., Berson, D. M. & Yau, K. W. Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295, 1065–1070 (2002)
    Article ADS CAS Google Scholar
  4. Guler, A. D. et al. Melanopsin cells are the principal conduits for rod–cone input to non-image-forming vision. Nature 453, 102–105 (2008)
    Article ADS Google Scholar
  5. Hatori, M. et al. Inducible ablation of melanopsin-expressing retinal ganglion cells reveals their central role in non-image forming visual responses. PLoS ONE 3, e2451 (2008)
    Article ADS Google Scholar
  6. Hattar, S. et al. Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice. Nature 424, 76–81 (2003)
    Article ADS CAS Google Scholar
  7. Provencio, I., Jiang, G., De Grip, W. J., Hayes, W. P. & Rollag, M. D. Melanopsin: An opsin in melanophores, brain, and eye. Proc. Natl Acad. Sci. USA 95, 340–345 (1998)
    Article ADS CAS Google Scholar
  8. Provencio, I., Rollag, M. D. & Castrucci, A. M. Photoreceptive net in the mammalian retina. This mesh of cells may explain how some blind mice can still tell day from night. Nature 415, 493 (2002)
    Article ADS CAS Google Scholar
  9. Melyan, Z., Tarttelin, E. E., Bellingham, J., Lucas, R. J. & Hankins, M. W. Addition of human melanopsin renders mammalian cells photoresponsive. Nature 433, 741–745 (2005)
    Article ADS CAS Google Scholar
  10. Qiu, X. et al. Induction of photosensitivity by heterologous expression of melanopsin. Nature 433, 745–749 (2005)
    Article ADS CAS Google Scholar
  11. Panda, S. et al. Illumination of the melanopsin signaling pathway. Science 307, 600–604 (2005)
    Article ADS CAS Google Scholar
  12. Fu, Y. et al. Intrinsically photosensitive retinal ganglion cells detect light with a vitamin A-based photopigment, melanopsin. Proc. Natl Acad. Sci. USA 102, 10339–10344 (2005)
    Article ADS CAS Google Scholar
  13. Gooley, J. J., Lu, J., Chou, T. C., Scammell, T. E. & Saper, C. B. Melanopsin in cells of origin of the retinohypothalamic tract. Nature Neurosci. 4, 1165 (2001)
    Article CAS Google Scholar
  14. Lucas, R. J. et al. Diminished pupillary light reflex at high irradiances in melanopsin-knockout mice. Science 299, 245–247 (2003)
    Article ADS CAS Google Scholar
  15. Panda, S. et al. Melanopsin is required for non-image-forming photic responses in blind mice. Science 301, 525–527 (2003)
    Article ADS CAS Google Scholar
  16. Walker, M. T., Brown, R. L., Cronin, T. W. & Robinson, P. R. Photochemistry of retinal chromophore in mouse melanopsin. Proc. Natl Acad. Sci. USA 105, 8861–8865 (2008)
    Article ADS CAS Google Scholar
  17. Qiu, X. & Berson, D. M. Melanopsin bistability in ganglion cell photoreceptors. Invest. Ophthalmol. Vis. Sci. 48, E-Abstract 612 (2007)
  18. Koyanagi, M., Kubokawa, K., Tsukamoto, H., Shichida, Y. & Terakita, A. Cephalochordate melanopsin: evolutionary linkage between invertebrate visual cells and vertebrate photosensitive retinal ganglion cells. Curr. Biol. 15, 1065–1069 (2005)
    Article CAS Google Scholar
  19. Mure, L. S., Rieux, C., Hattar, S. & Cooper, H. M. Melanopsin-dependent nonvisual responses: evidence for photopigment bistability in vivo . J. Biol. Rhythms 22, 411–424 (2007)
    Article Google Scholar
  20. Yang, X. W., Model, P. & Heintz, N. Homologous recombination based modification in Escherichia coli and germline transmission in transgenic mice of a bacterial artificial chromosome. Nature Biotechnol. 15, 859–865 (1997)
    Article CAS Google Scholar
  21. Shaner, N. C. et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nature Biotechnol. 22, 1567–1572 (2004)
    Article CAS Google Scholar
  22. Dacey, D. M. et al. Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN. Nature 433, 749–754 (2005)
    Article ADS CAS Google Scholar
  23. Tu, D. C. et al. Physiologic diversity and development of intrinsically photosensitive retinal ganglion cells. Neuron 48, 987–999 (2005)
    Article CAS Google Scholar
  24. Warren, E. J., Allen, C. N., Brown, R. L. & Robinson, D. W. Intrinsic light responses of retinal ganglion cells projecting to the circadian system. Eur. J. Neurosci. 17, 1727–1735 (2003)
    Article Google Scholar
  25. Schmidt, T. M., Taniguchi, K. & Kofuji, P. Intrinsic and extrinsic light responses in melanopsin-expressing ganglion cells during mouse development. J. Neurophysiol. 100, 371–384 (2008)
    Article CAS Google Scholar
  26. Baylor, D. A., Hodgkin, A. L. & Lamb, T. D. The electrical response of turtle cones to flashes and steps of light. J. Physiol. 242, 685–727 (1974)
    Article CAS Google Scholar
  27. Baylor, D. A., Lamb, T. D. & Yau, K. W. The membrane current of single rod outer segments. J. Physiol. 288, 589–611 (1979)
    CAS PubMed PubMed Central Google Scholar
  28. Luo, D.-G., Kefalov, V. & Yau, K.-W. in The Senses: A Comprehensive Reference (ed. Basbaum, A. I.) (Elsevier/Academic Press, 2008)
    Google Scholar
  29. Wong, K. Y., Dunn, F. A. & Berson, D. M. Photoreceptor adaptation in intrinsically photosensitive retinal ganglion cells. Neuron 48, 1001–1010 (2005)
    Article CAS Google Scholar
  30. Lamb, T. D., McNaughton, P. A. & Yau, K. W. Spatial spread of activation and background desensitization in toad rod outer segments. J. Physiol. 319, 463–496 (1981)
    Article CAS Google Scholar
  31. Wong, K. Y., Ecker, J. L., Dumitrescu, O. N., Berson, D. M. & Hattar, S. Multiple morphological types of melanopsin ganglion cells with distinct light responses and axonal targets. Invest. Ophthalmol. Vis. Sci. 49, E-Abstract 1518 (2008)
  32. Raport, C. J. et al. Downregulation of cGMP phosphodiesterase induced by expression of GTPase-deficient cone transducin in mouse rod photoreceptors. Invest. Ophthalmol. Vis. Sci. 35, 2932–2947 (1994)
    CAS PubMed Google Scholar
  33. Nikonov, S. S., Kholodenko, R., Lem, J. & Pugh, E. N. Physiological features of the S- and M-cone photoreceptors of wild-type mice from single-cell recordings. J. Gen. Physiol. 127, 359–374 (2006)
    Article Google Scholar
  34. Baylor, D. A., Lamb, T. D. & Yau, K. W. Responses of retinal rods to single photons. J. Physiol. 288, 613–634 (1979)
    CAS PubMed PubMed Central Google Scholar
  35. Chen, C. K. et al. Abnormal photoresponses and light-induced apoptosis in rods lacking rhodopsin kinase. Proc. Natl Acad. Sci. USA 96, 3718–3722 (1999)
    Article ADS CAS Google Scholar
  36. Kraft, T. W. Photocurrents of cone photoreceptors of the golden-mantled ground squirrel. J. Physiol. (Lond.) 404, 199–213 (1988)
    Article CAS Google Scholar
  37. Hardie, R. C. & Postma, M. in The Senses: A Comprehensive Reference (ed. Basbaum, A. I.) (Elsevier Science/Academic Press, 2008)
    Google Scholar
  38. Dorlochter, M. & Stieve, H. The Limulus ventral photoreceptor: light response and the role of calcium in a classic preparation. Prog. Neurobiol. 53, 451–515 (1997)
    Article CAS Google Scholar
  39. Baylor, D. A. & Hodgkin, A. L. Detection and resolution of visual stimuli by turtle photoreceptors. J. Physiol. 234, 163–198 (1973)
    Article CAS Google Scholar
  40. Liebman, P. A., Parker, K. R. & Dratz, E. A. The molecular mechanism of visual excitation and its relation to the structure and composition of the rod outer segment. Annu. Rev. Physiol. 49, 765–791 (1987)
    Article CAS Google Scholar
  41. Belenky, M. A., Smeraski, C. A., Provencio, I., Sollars, P. J. & Pickard, G. E. Melanopsin retinal ganglion cells receive bipolar and amacrine cell synapses. J. Comp. Neurol. 460, 380–393 (2003)
    Article Google Scholar
  42. Lucas, R. J., Douglas, R. H. & Foster, R. G. Characterization of an ocular photopigment capable of driving pupillary constriction in mice. Nature Neurosci. 4, 621–626 (2001)
    Article CAS Google Scholar
  43. Cahill, H. & Nathans, J. The optokinetic reflex as a tool for quantitative analyses of nervous system function in mice: application to genetic and drug-induced variation. PLoS ONE 3, e2055 (2008)
    Article ADS Google Scholar
  44. Grozdanic, S. et al. Characterization of the pupil light reflex, electroretinogram and tonometric parameters in healthy mouse eyes. Curr. Eye Res. 26, 371–378 (2003)
    Article Google Scholar
  45. Wong, K. Y., Dunn, F. A., Graham, D. M. & Berson, D. M. Synaptic influences on rat ganglion-cell photoreceptors. J. Physiol. 582, 279–296 (2007)
    Article CAS Google Scholar
  46. Perez-Leon, J. A., Warren, E. J., Allen, C. N., Robinson, D. W. & Lane Brown, R. Synaptic inputs to retinal ganglion cells that set the circadian clock. Eur. J. Neurosci. 24, 1117–1123 (2006)
    Article Google Scholar
  47. Hecht, S., Shlaer, S. & Pirenne, M. H. Energy, quanta, and vision. J. Gen. Physiol. 25, 819–840 (1942)
    Article CAS Google Scholar
  48. Lisman, J. E. & Bering, H. Electrophysiological measurement of the number of rhodopsin molecules in single Limulus photoreceptors. J. Gen. Physiol. 70, 621–633 (1977)
    Article CAS Google Scholar
  49. Harosi, F. I. Absorption spectra and linear dichroism of some amphibian photoreceptors. J. Gen. Physiol. 66, 357–382 (1975)
    Article CAS Google Scholar
  50. Dartnall, H. J. A. in Photochemistry of Vision (ed. Dartnall, H. J. A.) 122–145 (Springer, 1972)
    Book Google Scholar

Download references