Photon capture and signalling by melanopsin retinal ganglion cells (original) (raw)
References
Hankins, M. W., Peirson, S. N. & Foster, R. G. Melanopsin: an exciting photopigment. Trends Neurosci.31, 27–36 (2008) ArticleCAS Google Scholar
Berson, D. M., Dunn, F. A. & Takao, M. Phototransduction by retinal ganglion cells that set the circadian clock. Science295, 1070–1073 (2002) ArticleADSCAS Google Scholar
Hattar, S., Liao, H. W., Takao, M., Berson, D. M. & Yau, K. W. Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science295, 1065–1070 (2002) ArticleADSCAS Google Scholar
Guler, A. D. et al. Melanopsin cells are the principal conduits for rod–cone input to non-image-forming vision. Nature453, 102–105 (2008) ArticleADS Google Scholar
Hatori, M. et al. Inducible ablation of melanopsin-expressing retinal ganglion cells reveals their central role in non-image forming visual responses. PLoS ONE3, e2451 (2008) ArticleADS Google Scholar
Hattar, S. et al. Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice. Nature424, 76–81 (2003) ArticleADSCAS Google Scholar
Provencio, I., Jiang, G., De Grip, W. J., Hayes, W. P. & Rollag, M. D. Melanopsin: An opsin in melanophores, brain, and eye. Proc. Natl Acad. Sci. USA95, 340–345 (1998) ArticleADSCAS Google Scholar
Provencio, I., Rollag, M. D. & Castrucci, A. M. Photoreceptive net in the mammalian retina. This mesh of cells may explain how some blind mice can still tell day from night. Nature415, 493 (2002) ArticleADSCAS Google Scholar
Melyan, Z., Tarttelin, E. E., Bellingham, J., Lucas, R. J. & Hankins, M. W. Addition of human melanopsin renders mammalian cells photoresponsive. Nature433, 741–745 (2005) ArticleADSCAS Google Scholar
Qiu, X. et al. Induction of photosensitivity by heterologous expression of melanopsin. Nature433, 745–749 (2005) ArticleADSCAS Google Scholar
Panda, S. et al. Illumination of the melanopsin signaling pathway. Science307, 600–604 (2005) ArticleADSCAS Google Scholar
Fu, Y. et al. Intrinsically photosensitive retinal ganglion cells detect light with a vitamin A-based photopigment, melanopsin. Proc. Natl Acad. Sci. USA102, 10339–10344 (2005) ArticleADSCAS Google Scholar
Gooley, J. J., Lu, J., Chou, T. C., Scammell, T. E. & Saper, C. B. Melanopsin in cells of origin of the retinohypothalamic tract. Nature Neurosci.4, 1165 (2001) ArticleCAS Google Scholar
Lucas, R. J. et al. Diminished pupillary light reflex at high irradiances in melanopsin-knockout mice. Science299, 245–247 (2003) ArticleADSCAS Google Scholar
Panda, S. et al. Melanopsin is required for non-image-forming photic responses in blind mice. Science301, 525–527 (2003) ArticleADSCAS Google Scholar
Walker, M. T., Brown, R. L., Cronin, T. W. & Robinson, P. R. Photochemistry of retinal chromophore in mouse melanopsin. Proc. Natl Acad. Sci. USA105, 8861–8865 (2008) ArticleADSCAS Google Scholar
Qiu, X. & Berson, D. M. Melanopsin bistability in ganglion cell photoreceptors. Invest. Ophthalmol. Vis. Sci.48, E-Abstract 612 (2007)
Koyanagi, M., Kubokawa, K., Tsukamoto, H., Shichida, Y. & Terakita, A. Cephalochordate melanopsin: evolutionary linkage between invertebrate visual cells and vertebrate photosensitive retinal ganglion cells. Curr. Biol.15, 1065–1069 (2005) ArticleCAS Google Scholar
Mure, L. S., Rieux, C., Hattar, S. & Cooper, H. M. Melanopsin-dependent nonvisual responses: evidence for photopigment bistability in vivo . J. Biol. Rhythms22, 411–424 (2007) Article Google Scholar
Yang, X. W., Model, P. & Heintz, N. Homologous recombination based modification in Escherichia coli and germline transmission in transgenic mice of a bacterial artificial chromosome. Nature Biotechnol.15, 859–865 (1997) ArticleCAS Google Scholar
Shaner, N. C. et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nature Biotechnol.22, 1567–1572 (2004) ArticleCAS Google Scholar
Dacey, D. M. et al. Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN. Nature433, 749–754 (2005) ArticleADSCAS Google Scholar
Tu, D. C. et al. Physiologic diversity and development of intrinsically photosensitive retinal ganglion cells. Neuron48, 987–999 (2005) ArticleCAS Google Scholar
Warren, E. J., Allen, C. N., Brown, R. L. & Robinson, D. W. Intrinsic light responses of retinal ganglion cells projecting to the circadian system. Eur. J. Neurosci.17, 1727–1735 (2003) Article Google Scholar
Schmidt, T. M., Taniguchi, K. & Kofuji, P. Intrinsic and extrinsic light responses in melanopsin-expressing ganglion cells during mouse development. J. Neurophysiol.100, 371–384 (2008) ArticleCAS Google Scholar
Baylor, D. A., Hodgkin, A. L. & Lamb, T. D. The electrical response of turtle cones to flashes and steps of light. J. Physiol.242, 685–727 (1974) ArticleCAS Google Scholar
Baylor, D. A., Lamb, T. D. & Yau, K. W. The membrane current of single rod outer segments. J. Physiol.288, 589–611 (1979) CASPubMedPubMed Central Google Scholar
Luo, D.-G., Kefalov, V. & Yau, K.-W. in The Senses: A Comprehensive Reference (ed. Basbaum, A. I.) (Elsevier/Academic Press, 2008) Google Scholar
Wong, K. Y., Dunn, F. A. & Berson, D. M. Photoreceptor adaptation in intrinsically photosensitive retinal ganglion cells. Neuron48, 1001–1010 (2005) ArticleCAS Google Scholar
Lamb, T. D., McNaughton, P. A. & Yau, K. W. Spatial spread of activation and background desensitization in toad rod outer segments. J. Physiol.319, 463–496 (1981) ArticleCAS Google Scholar
Wong, K. Y., Ecker, J. L., Dumitrescu, O. N., Berson, D. M. & Hattar, S. Multiple morphological types of melanopsin ganglion cells with distinct light responses and axonal targets. Invest. Ophthalmol. Vis. Sci.49, E-Abstract 1518 (2008)
Raport, C. J. et al. Downregulation of cGMP phosphodiesterase induced by expression of GTPase-deficient cone transducin in mouse rod photoreceptors. Invest. Ophthalmol. Vis. Sci.35, 2932–2947 (1994) CASPubMed Google Scholar
Nikonov, S. S., Kholodenko, R., Lem, J. & Pugh, E. N. Physiological features of the S- and M-cone photoreceptors of wild-type mice from single-cell recordings. J. Gen. Physiol.127, 359–374 (2006) Article Google Scholar
Baylor, D. A., Lamb, T. D. & Yau, K. W. Responses of retinal rods to single photons. J. Physiol.288, 613–634 (1979) CASPubMedPubMed Central Google Scholar
Chen, C. K. et al. Abnormal photoresponses and light-induced apoptosis in rods lacking rhodopsin kinase. Proc. Natl Acad. Sci. USA96, 3718–3722 (1999) ArticleADSCAS Google Scholar
Kraft, T. W. Photocurrents of cone photoreceptors of the golden-mantled ground squirrel. J. Physiol. (Lond.)404, 199–213 (1988) ArticleCAS Google Scholar
Hardie, R. C. & Postma, M. in The Senses: A Comprehensive Reference (ed. Basbaum, A. I.) (Elsevier Science/Academic Press, 2008) Google Scholar
Dorlochter, M. & Stieve, H. The Limulus ventral photoreceptor: light response and the role of calcium in a classic preparation. Prog. Neurobiol.53, 451–515 (1997) ArticleCAS Google Scholar
Baylor, D. A. & Hodgkin, A. L. Detection and resolution of visual stimuli by turtle photoreceptors. J. Physiol.234, 163–198 (1973) ArticleCAS Google Scholar
Liebman, P. A., Parker, K. R. & Dratz, E. A. The molecular mechanism of visual excitation and its relation to the structure and composition of the rod outer segment. Annu. Rev. Physiol.49, 765–791 (1987) ArticleCAS Google Scholar
Belenky, M. A., Smeraski, C. A., Provencio, I., Sollars, P. J. & Pickard, G. E. Melanopsin retinal ganglion cells receive bipolar and amacrine cell synapses. J. Comp. Neurol.460, 380–393 (2003) Article Google Scholar
Lucas, R. J., Douglas, R. H. & Foster, R. G. Characterization of an ocular photopigment capable of driving pupillary constriction in mice. Nature Neurosci.4, 621–626 (2001) ArticleCAS Google Scholar
Cahill, H. & Nathans, J. The optokinetic reflex as a tool for quantitative analyses of nervous system function in mice: application to genetic and drug-induced variation. PLoS ONE3, e2055 (2008) ArticleADS Google Scholar
Grozdanic, S. et al. Characterization of the pupil light reflex, electroretinogram and tonometric parameters in healthy mouse eyes. Curr. Eye Res.26, 371–378 (2003) Article Google Scholar
Wong, K. Y., Dunn, F. A., Graham, D. M. & Berson, D. M. Synaptic influences on rat ganglion-cell photoreceptors. J. Physiol.582, 279–296 (2007) ArticleCAS Google Scholar
Perez-Leon, J. A., Warren, E. J., Allen, C. N., Robinson, D. W. & Lane Brown, R. Synaptic inputs to retinal ganglion cells that set the circadian clock. Eur. J. Neurosci.24, 1117–1123 (2006) Article Google Scholar
Hecht, S., Shlaer, S. & Pirenne, M. H. Energy, quanta, and vision. J. Gen. Physiol.25, 819–840 (1942) ArticleCAS Google Scholar
Lisman, J. E. & Bering, H. Electrophysiological measurement of the number of rhodopsin molecules in single Limulus photoreceptors. J. Gen. Physiol.70, 621–633 (1977) ArticleCAS Google Scholar
Harosi, F. I. Absorption spectra and linear dichroism of some amphibian photoreceptors. J. Gen. Physiol.66, 357–382 (1975) ArticleCAS Google Scholar
Dartnall, H. J. A. in Photochemistry of Vision (ed. Dartnall, H. J. A.) 122–145 (Springer, 1972) Book Google Scholar