- Merrick, W. C. & Nyborg, J. in Translational Control of Gene Expression (eds Sonenberg, N., Hershey, J. W. B. & Mathews, M. B.) 89–125 (Cold Spring Harbor Laboratory Press, 2000)
Google Scholar
- Wolff, E. C., Kang, K. R., Kim, Y. S. & Park, M. H. Posttranslational synthesis of hypusine: evolutionary progression and specificity of the hypusine modification. Amino Acids 33, 341–350 (2007)
Article CAS Google Scholar
- Kemper, W. M., Berry, K. W. & Merrick, W. C. Purification and properties of rabbit reticulocyte protein synthesis initiation factors M2Bα and M2Bβ. J. Biol. Chem. 251, 5551–5557 (1976)
CAS PubMed Google Scholar
- Schreier, M. H., Erni, B. & Staehelin, T. Initiation of mammalian protein synthesis: purification and characterization of seven initiation factors. J. Mol. Biol. 116, 727–753 (1977)
Article CAS Google Scholar
- Jao, D. L. & Chen, K. Y. Tandem affinity purification revealed the hypusine-dependent binding of eukaryotic initiation factor 5A to the translating 80S ribosomal complex. J. Cell. Biochem. 97, 583–598 (2006)
Article CAS Google Scholar
- Zanelli, C. F. et al. eIF5A binds to translational machinery components and affects translation in yeast. Biochem. Biophys. Res. Commun. 348, 1358–1366 (2006)
Article CAS Google Scholar
- Park, M. H., Wolff, E. C., Smit-McBride, Z., Hershey, J. W. & Folk, J. E. Comparison of the activities of variant forms of eIF-4D. The requirement for hypusine or deoxyhypusine. J. Biol. Chem. 266, 7988–7994 (1991)
CAS PubMed Google Scholar
- Benne, R. & Hershey, J. W. B. The mechanism of action of protein synthesis initiation factors from rabbit reticulocytes. J. Biol. Chem. 253, 3078–3087 (1978)
CAS PubMed Google Scholar
- Kang, H. A. & Hershey, J. W. Effect of initiation factor eIF-5A depletion on protein synthesis and proliferation of Saccharomyces cerevisiae . J. Biol. Chem. 269, 3934–3940 (1994)
CAS PubMed Google Scholar
- Schrader, R., Young, C., Kozian, D., Hoffmann, R. & Lottspeich, F. Temperature-sensitive eIF5A mutant accumulates transcripts targeted to the nonsense-mediated decay pathway. J. Biol. Chem. 281, 35336–35346 (2006)
Article CAS Google Scholar
- Zuk, D. & Jacobson, A. A single amino acid substitution in yeast eIF-5A results in mRNA stabilization. EMBO J. 17, 2914–2925 (1998)
Article CAS Google Scholar
- Ruhl, M. et al. Eukaryotic initiation factor 5A is a cellular target of the human immunodeficiency virus type 1 Rev activation domain mediating trans-activation. J. Cell Biol. 123, 1309–1320 (1993)
Article CAS Google Scholar
- Zanelli, C. F. & Valentini, S. R. Is there a role for eIF5A in translation? Amino Acids 33, 351–358 (2007)
Article CAS Google Scholar
- Hanawa-Suetsugu, K. et al. Crystal structure of elongation factor P from Thermus thermophilus HB8. Proc. Natl Acad. Sci. USA 101, 9595–9600 (2004)
Article ADS Google Scholar
- Kyrpides, N. C. & Woese, C. R. Universally conserved translation initiation factors. Proc. Natl Acad. Sci. USA 95, 224–228 (1998)
Article ADS CAS Google Scholar
- Jivotovskaya, A. V., Valasek, L., Hinnebusch, A. G. & Nielsen, K. H. Eukaryotic translation initiation factor 3 (eIF3) and eIF2 can promote mRNA binding to 40S subunits independently of eIF4G in yeast. Mol. Cell. Biol. 26, 1355–1372 (2006)
Article CAS Google Scholar
- Smirnov, V. N. et al. Recessive nonsense-suppression in yeast: further characterization of a defect in translation. FEBS Lett. 66, 12–15 (1976)
Article CAS Google Scholar
- Anand, M., Chakraburtty, K., Marton, M. J., Hinnebusch, A. G. & Kinzy, T. G. Functional interactions between yeast translation eukaryotic elongation factor (eEF) 1A and eEF3. J. Biol. Chem. 278, 6985–6991 (2003)
Article CAS Google Scholar
- Ortiz, P. A. & Kinzy, T. G. Dominant-negative mutant phenotypes and the regulation of translation elongation factor 2 levels in yeast. Nucleic Acids Res. 33, 5740–5748 (2005)
Article CAS Google Scholar
- Fan, H. & Penman, S. Regulation of protein synthesis in mammalian cells. II. Inhibition of protein synthesis at the level of initiation during mitosis. J. Mol. Biol. 50, 655–670 (1970)
Article CAS Google Scholar
- Nielsen, P. J. & McConkey, E. H. Evidence for control of protein synthesis in HeLa cells via the elongation rate. J. Cell. Physiol. 104, 269–281 (1980)
Article CAS Google Scholar
- Acker, M. G., Kolitz, S. E., Mitchell, S. F., Nanda, J. S. & Lorsch, J. R. Reconstitution of yeast translation initiation. Methods Enzymol. 430, 111–145 (2007)
Article CAS Google Scholar
- Youngman, E. M., McDonald, M. E. & Green, R. Peptide release on the ribosome: mechanism and implications for translational control. Annu. Rev. Microbiol. 62, 353–373 (2008)
Article CAS Google Scholar
- Harger, J. W., Meskauskas, A., Nielsen, J., Justice, M. C. & Dinman, J. D. Ty1 retrotransposition and programmed +1 ribosomal frameshifting require the integrity of the protein synthetic translocation step. Virology 286, 216–224 (2001)
Article CAS Google Scholar
- Zhang, S. et al. Polysome-associated mRNAs are substrates for the nonsense-mediated mRNA decay pathway in Saccharomyces cerevisiae . RNA 3, 234–244 (1997)
CAS PubMed PubMed Central Google Scholar
- Glick, B. R. & Ganoza, M. C. Identification of a soluble protein that stimulates peptide bond synthesis. Proc. Natl Acad. Sci. USA 72, 4257–4260 (1975)
Article ADS CAS Google Scholar
- Ganoza, M. C. & Aoki, H. Peptide bond synthesis: function of the efp gene product. Biol. Chem. 381, 553–559 (2000)
Article CAS Google Scholar
- Dohmen, R. J., Wu, P. & Varshavsky, A. Heat-inducible degron: a method for constructing temperature-sensitive mutants. Science 263, 1273–1276 (1994)
Article ADS CAS Google Scholar
- Labib, K., Tercero, J. A. & Diffley, J. F. Uninterrupted MCM2–7 function required for DNA replication fork progression. Science 288, 1643–1647 (2000)
Article ADS CAS Google Scholar
- Harger, J. W. & Dinman, J. D. An in vivo dual-luciferase assay system for studying translational recoding in the yeast Saccharomyces cerevisiae . RNA 9, 1019–1024 (2003)
Article CAS Google Scholar
- Gietz, R. D. & Sugino, A. New yeast–Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74, 527–534 (1988)
Article CAS Google Scholar
- Tong, A. H. et al. Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294, 2364–2368 (2001)
Article ADS CAS Google Scholar
- Shenton, D. et al. Global translational responses to oxidative stress impact upon multiple levels of protein synthesis. J. Biol. Chem. 281, 29011–29021 (2006)
Article CAS Google Scholar
- Tarun, S. Z. & Sachs, A. B. A common function for mRNA 5′ and 3′ ends in translation initiation in yeast. Genes Dev. 9, 2997–3007 (1995)
Article CAS Google Scholar
- Gallie, D. R., Feder, J. N., Schimke, R. T. & Walbot, V. Post-transcriptional regulation in higher eukaryotes: the role of the reporter gene in controlling expression. Mol. Gen. Genet. 228, 258–264 (1991)
Article CAS Google Scholar