The Listeria transcriptional landscape from saprophytism to virulence (original) (raw)
Accession codes
Primary accessions
ArrayExpress
Data deposits
Raw data are available from ArrayExpress (http://www.ebi.ac.uk/arrayexpress) under accession numbers E-MEXP-2138 for gene expression sub-array analysis and E-MEXP-2142 for tiling sub-array analysis.
References
- Cossart, P. & Toledo-Arana, A. Listeria monocytogenes, a unique model in infection biology: an overview. Microbes Infect. 10, 1041–1050 (2008)
Article CAS Google Scholar - Lecuit, M. Understanding how Listeria monocytogenes targets and crosses host barriers. Clin. Microbiol. Infect. 11, 430–436 (2005)
Article CAS Google Scholar - Hamon, M., Bierne, H. & Cossart, P. Listeria monocytogenes: a multifaceted model. Nature Rev. Microbiol. 4, 423–434 (2006)
Article CAS Google Scholar - Glaser, P. et al. Comparative genomics of Listeria species. Science 294, 849–852 (2001)
ADS CAS PubMed Google Scholar - Dussurget, O., Pizarro-Cerda, J. & Cossart, P. Molecular determinants of Listeria monocytogenes virulence. Annu. Rev. Microbiol. 58, 587–610 (2004)
Article CAS Google Scholar - Leimeister-Wachter, M. et al. Identification of a gene that positively regulates expression of listeriolysin, the major virulence factor of Listeria monocytogenes . Proc. Natl Acad. Sci. USA 87, 8336–8340 (1990)
Article ADS CAS Google Scholar - Mengaud, J. et al. Pleiotropic control of Listeria monocytogenes virulence factors by a gene that is autoregulated. Mol. Microbiol. 5, 2273–2283 (1991)
Article CAS Google Scholar - Johansson, J. et al. An RNA thermosensor controls expression of virulence genes in Listeria monocytogenes . Cell 110, 551–561 (2002)
Article Google Scholar - Garner, M. R., Njaa, B. L., Wiedmann, M. & Boor, K. J. Sigma B contributes to Listeria monocytogenes gastrointestinal infection but not to systemic spread in the guinea pig infection model. Infect. Immun. 74, 876–886 (2006)
Article CAS Google Scholar - Gahan, C. G. & Hill, C. Gastrointestinal phase of Listeria monocytogenes infection. J. Appl. Microbiol. 98, 1345–1353 (2005)
Article CAS Google Scholar - Mandin, P. et al. VirR, a response regulator critical for Listeria monocytogenes virulence. Mol. Microbiol. 57, 1367–1380 (2005)
Article CAS Google Scholar - Barry, T., Kelly, M., Glynn, B. & Peden, J. Molecular cloning and phylogenetic analysis of the small cytoplasmic RNA from Listeria monocytogenes . FEMS Microbiol. Lett. 173, 47–53 (1999)
Article CAS Google Scholar - Christiansen, J. K. et al. Identification of small Hfq-binding RNAs in Listeria monocytogenes . RNA 12, 1383–1396 (2006)
Article CAS Google Scholar - Mandin, P. et al. Identification of new noncoding RNAs in Listeria monocytogenes and prediction of mRNA targets. Nucleic Acids Res. 35, 962–974 (2007)
Article CAS Google Scholar - Nielsen, J. S. et al. Identification of a sigma B-dependent small noncoding RNA in Listeria monocytogenes . J. Bacteriol. 190, 6264–6270 (2008)
Article CAS Google Scholar - Toledo-Arana, A., Repoila, F. & Cossart, P. Small noncoding RNAs controlling pathogenesis. Curr. Opin. Microbiol. 10, 182–188 (2007)
Article CAS Google Scholar - Christiansen, J. K. et al. The RNA-binding protein Hfq of Listeria monocytogenes: role in stress tolerance and virulence. J. Bacteriol. 186, 3355–3362 (2004)
Article CAS Google Scholar - Yazaki, J., Gregory, B. D. & Ecker, J. R. Mapping the genome landscape using tiling array technology. Curr. Opin. Plant Biol. 10, 534–542 (2007)
Article CAS Google Scholar - Gregory, B. D., Yazaki, J. & Ecker, J. R. Utilizing tiling microarrays for whole-genome analysis in plants. Plant J. 53, 636–644 (2008)
Article CAS Google Scholar - David, L. et al. A high-resolution map of transcription in the yeast genome. Proc. Natl Acad. Sci. USA 103, 5320–5325 (2006)
Article ADS CAS Google Scholar - Selinger, D. W. et al. RNA expression analysis using a 30 base pair resolution Escherichia coli genome array. Nature Biotechnol. 18, 1262–1268 (2000)
Article CAS Google Scholar - McGrath, P. T. et al. High-throughput identification of transcription start sites, conserved promoter motifs and predicted regulons. Nature Biotechnol. 25, 584–592 (2007)
Article CAS Google Scholar - Landt, S. G. et al. Small non-coding RNAs in Caulobacter crescentus . Mol. Microbiol. 68, 600–614 (2008)
Article CAS Google Scholar - Disson, O. et al. Conjugated action of two species-specific invasion proteins for fetoplacental listeriosis. Nature 455, 1114–1118 (2008)
Article ADS CAS Google Scholar - Winkler, W. C. Riboswitches and the role of noncoding RNAs in bacterial metabolic control. Curr. Opin. Chem. Biol. 9, 594–602 (2005)
Article CAS Google Scholar - Brantl, S. Regulatory mechanisms employed by _cis_-encoded antisense RNAs. Curr. Opin. Microbiol. 10, 102–109 (2007)
Article CAS Google Scholar - Coppins, R. L., Hall, K. B. & Groisman, E. A. The intricate world of riboswitches. Curr. Opin. Microbiol. 10, 176–181 (2007)
Article CAS Google Scholar - Griffiths-Jones, S. et al. Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Res. 33 (Database issue). D121–D124 (2005)
Article CAS Google Scholar - Loh, E., Gripenland, J. & Johansson, J. Control of Listeria monocytogenes virulence by 5′-untranslated RNA. Trends Microbiol. 14, 294–298 (2006)
Article CAS Google Scholar - Grundling, A., Burrack, L. S., Bouwer, H. G. & Higgins, D. E. Listeria monocytogenes regulates flagellar motility gene expression through MogR, a transcriptional repressor required for virulence. Proc. Natl Acad. Sci. USA 101, 12318–12323 (2004)
Article ADS Google Scholar - Raengpradub, S., Wiedmann, M. & Boor, K. J. Comparative analysis of the sigma B-dependent stress responses in Listeria monocytogenes and Listeria innocua strains exposed to selected stress conditions. Appl. Environ. Microbiol. 74, 158–171 (2008)
Article CAS Google Scholar - Kazmierczak, M. J., Mithoe, S. C., Boor, K. J. & Wiedmann, M. Listeria monocytogenes sigma B regulates stress response and virulence functions. J. Bacteriol. 185, 5722–5734 (2003)
Article CAS Google Scholar - Hain, T. et al. Temporal transcriptomic analysis of the Listeria monocytogenes EGD-e sigma B regulon. BMC Microbiol. 8, 20 (2008)
Article Google Scholar - Dussurget, O. et al. Listeria monocytogenes bile salt hydrolase is a PrfA-regulated virulence factor involved in the intestinal and hepatic phases of listeriosis. Mol. Microbiol. 45, 1095–1106 (2002)
Article CAS Google Scholar - Chakraborty, T., Hain, T. & Domann, E. Genome organization and the evolution of the virulence gene locus in Listeria species. Int. J. Med. Microbiol. 290, 167–174 (2000)
Article CAS Google Scholar - Scortti, M. et al. The PrfA virulence regulon. Microbes Infect. 9, 1196–1207 (2007)
Article CAS Google Scholar - Chico-Calero, I. et al. Hpt, a bacterial homolog of the microsomal glucose-6-phosphate translocase, mediates rapid intracellular proliferation in Listeria . Proc. Natl Acad. Sci. USA 99, 431–436 (2002)
Article ADS CAS Google Scholar
Acknowledgements
We are grateful to E. Charpentier and the members of her group for providing the RACE protocol. We thank L. Frangeul for helping with L. monocytogenes annotation files. J.J. is supported by the Swedish Research Council grants K2008-58X-15144-05-3 and 621-2006-4450 and EU (BacRNA 2005 Contract N° 018618). Work in the laboratory of P.C. received financial support from Institut Pasteur (GPH 9), Inserm, INRA, EU (BacRNA 2005-018618), ANR (ANR-05-MIIM-026-01) and ERC (Advanced Grant 233348). A.T.-A. was an EMBO long-term fellow. P.C. is an international research scholar of the Howard Hughes Medical Institute.
Author Contributions P.C. planned the project. A.T.-A., O.D., M.L. and P.C. designed the research. A.T.-A., O.D., G.N., N.S., H.G.-R., D.B., E.L., J.G., T.T., K.V., M.-A.N., G.S. and M.L. performed the experiments. A.T.-A., O.D., M.B., M.V., B.R., J.-Y.C., M.L., J.J. and P.C. analysed the experiments. A.T.-A., O.D. and P.C. wrote the paper and co-authors commented on it.
Author information
Author notes
- Alejandro Toledo-Arana
Present address: Present address: Instituto de Agrobiotecnología, Universidad Pública de Navarra-CSIC-Gobierno de Navarra, 31006-Pamplona, Spain.,
Authors and Affiliations
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, F-75015 Paris, France
Alejandro Toledo-Arana, Olivier Dussurget, Nina Sesto, Hélène Guet-Revillet, Damien Balestrino, Marie-Anne Nahori & Pascale Cossart - Inserm, U604, F-75015 Paris, France ,
Alejandro Toledo-Arana, Olivier Dussurget, Georgios Nikitas, Nina Sesto, Hélène Guet-Revillet, Damien Balestrino, Marie-Anne Nahori, Marc Lecuit & Pascale Cossart - INRA, USC2020, F-75015 Paris, France ,
Alejandro Toledo-Arana, Olivier Dussurget, Nina Sesto, Hélène Guet-Revillet, Damien Balestrino, Marie-Anne Nahori & Pascale Cossart - Institut Pasteur, G5 Microorganismes et Barrières de l’hôte, F-75015 Paris, France ,
Georgios Nikitas & Marc Lecuit - Inserm, Avenir, U604, F-75015 Paris, France ,
Georgios Nikitas & Marc Lecuit - Department of Molecular Biology,,
Edmund Loh, Jonas Gripenland, Teresa Tiensuu, Karolis Vaitkevicius & Jörgen Johansson - The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, S-90187 Umeå, Sweden ,
Edmund Loh, Jonas Gripenland, Teresa Tiensuu, Karolis Vaitkevicius & Jörgen Johansson - Institut Pasteur, Génopole, Plate-forme 2, F-75015 Paris, France ,
Mathieu Barthelemy, Guillaume Soubigou, Béatrice Régnault & Jean-Yves Coppée - Institut Pasteur, UP Génétique in silico, F-75015 Paris, France ,
Massimo Vergassola - CNRS, URA2171, F-75015 Paris, France ,
Massimo Vergassola - Université Paris Descartes, Hôpital Necker-Enfants malades, Assistance Publique-Hôpitaux de Paris, Paris, F-75015 France ,
Marc Lecuit
Authors
- Alejandro Toledo-Arana
You can also search for this author inPubMed Google Scholar - Olivier Dussurget
You can also search for this author inPubMed Google Scholar - Georgios Nikitas
You can also search for this author inPubMed Google Scholar - Nina Sesto
You can also search for this author inPubMed Google Scholar - Hélène Guet-Revillet
You can also search for this author inPubMed Google Scholar - Damien Balestrino
You can also search for this author inPubMed Google Scholar - Edmund Loh
You can also search for this author inPubMed Google Scholar - Jonas Gripenland
You can also search for this author inPubMed Google Scholar - Teresa Tiensuu
You can also search for this author inPubMed Google Scholar - Karolis Vaitkevicius
You can also search for this author inPubMed Google Scholar - Mathieu Barthelemy
You can also search for this author inPubMed Google Scholar - Massimo Vergassola
You can also search for this author inPubMed Google Scholar - Marie-Anne Nahori
You can also search for this author inPubMed Google Scholar - Guillaume Soubigou
You can also search for this author inPubMed Google Scholar - Béatrice Régnault
You can also search for this author inPubMed Google Scholar - Jean-Yves Coppée
You can also search for this author inPubMed Google Scholar - Marc Lecuit
You can also search for this author inPubMed Google Scholar - Jörgen Johansson
You can also search for this author inPubMed Google Scholar - Pascale Cossart
You can also search for this author inPubMed Google Scholar
Corresponding author
Correspondence toPascale Cossart.
Supplementary information
PowerPoint slides
Rights and permissions
About this article
Cite this article
Toledo-Arana, A., Dussurget, O., Nikitas, G. et al. The Listeria transcriptional landscape from saprophytism to virulence.Nature 459, 950–956 (2009). https://doi.org/10.1038/nature08080
- Received: 21 March 2009
- Accepted: 27 April 2009
- Published: 17 May 2009
- Issue Date: 18 June 2009
- DOI: https://doi.org/10.1038/nature08080