Fluid and deformation regime of an advancing subduction system at Marlborough, New Zealand (original) (raw)

References

  1. Stern, R. J. Subduction initiation: spontaneous and induced. Earth Planet. Sci. Lett. 226, 275–292 (2004)
    Article ADS CAS Google Scholar
  2. Schellart, W. P., Freeman, J., Stegman, D. R., Moresi, L. & May, D. Evolution and diversity of subduction zones controlled by slab width. Nature 446, 308–311 (2007)
    Article ADS CAS Google Scholar
  3. Walcott, R. I. Models of oblique compression: Late Cenozoic tectonics of the South Island of New Zealand. Rev. Geophys. 36, 1–26 (1998)
    Article ADS Google Scholar
  4. Furlong, K. P. in Exhumation Associated with Continental Strike-Slip Fault Systems (eds Till, A. B., Roeske, S. M., Sample, J. C. & Foster, D. A.) Geol. Soc. Am. Spec. Pap. 434 1–14 (GSA, 2008)
    Google Scholar
  5. Wesnousky, S. G. Seismicity as a function of cumulative geologic offset: some observations from southern California. Bull. Seismol. Soc. Am. 80, 1374–1381 (1990)
    Google Scholar
  6. Davey, F. J. et al. in A Continental Boundary: Tectonics at South Island, New Zealand (eds Okaya, D., Stern, T. & Davey, F.) Geophys. Monogr. 175 47–73 (American Geophysical Union, 2007)
    Book Google Scholar
  7. Becken, M. et al. A deep crustal fluid channel into the San Andreas Fault system near Parkfield, California. Geophys. J. Int. 173, 718–732 (2008)
    Article ADS Google Scholar
  8. Mortimer, N. New Zealand’s geological foundations. Gondwana Res. 7, 261–272 (2004)
    Article ADS Google Scholar
  9. Jongens, R. Structure of the Buller and Takaka terrane rocks adjacent to the Anatoki fault, northwest Nelson, New Zealand. NZ J. Geol. Geophys. 49, 443–461 (2006)
    Article Google Scholar
  10. Ghisetti, F. C. & Sibson, R. H. Accommodation of compressional inversion in north-western South Island (New Zealand): old faults versus new? J. Struct. Geol. 28, 1994–2010 (2007)
    Article ADS Google Scholar
  11. Heise, W. et al. Melt distribution beneath a young continental rift: the Taupo Volcanic Zone, New Zealand. Geophys. Res. Lett. 34 L14313 10.1029/2007GL029629 (2007)
    Article ADS CAS Google Scholar
  12. Jones, A. G. Imaging the continental upper mantle using electromagnetic methods. Lithos 48, 57–80 (1999)
    Article ADS CAS Google Scholar
  13. Peacock, S. M. in Inside the Subduction Factory (ed. Eiler, J.) Am. Geophys. Monogr. 138 7–22 (American Geophysical Union, 2003)
    Book Google Scholar
  14. Reyners, M., Eberhart-Phillips, D. & Stuart, G. The role of fluids in lower-crustal earthquakes near continental rifts. Nature 446, 1075–1079 (2007)
    Article ADS CAS Google Scholar
  15. Ogawa, Y. & Honkura, Y. Mid-crustal electrical conductors and their correlations to seismicity and deformation at Itoigawa-Shizuoka tectonic line, central Japan. Earth Planets Space 56, 1285–1292 (2004)
    Article ADS Google Scholar
  16. Eberhart-Phillips, D., Chadwick, M. & Bannister, S. Three-dimensional attenuation structure of central and southern South Island, New Zealand, from local earthquakes. J. Geophys. Res. 113 B05308 10.1029/2007JB005359 (2008)
    Article ADS Google Scholar
  17. Eberhart-Phillips, D. & Henderson, M. C. Including anisotropy in 3-D velocity inversion and application to Marlborough, New Zealand. Geophys. J. Int. 156, 237–254 (2004)
    Article ADS Google Scholar
  18. Cox, S. F. Coupling between deformation, fluid pressures, and fluid flow in ore-producing hydrothermal systems at depth in the crust. Soc. Econ. Geol. 100th Anniv. Vol., 39–75 (2005)
  19. Bourne, S. J., England, P. C. & Parson, B. The motion of crustal blocks driven by flow in the lower lithosphere and implications for slip rates of continental strike-slip faults. Nature 391, 655–659 (1997)
    Article ADS Google Scholar
  20. Wilson, C. K., Jones, C. H., Molnar, P., Sheehan, A. F. & Boyd, O. S. Distributed deformation in the lower crust and upper mantle beneath a continental strike-slip fault zone: Marlborough fault system, South Island, New Zealand. Geology 32, 837–840 (2004)
    Article ADS Google Scholar
  21. Nicol, A. & Van Dissen, R. Up-dip partitioning of displacement components on the oblique-slip Clarence fault, New Zealand. J. Struct. Geol. 24, 1521–1535 (2002)
    Article ADS Google Scholar
  22. Mason, D. P. M., Little, T. A. & Van Dissen, R. J. Rates of active faulting during late Quaternary fluvial terrace formation at Saxton River, Awatere fault, New Zealand. Geol. Soc. Am. Bull. 118, 1431–1466 (2006)
    Article ADS Google Scholar
  23. Cox, S. F. in Fractures, Fluid Flow and Mineralization (ed. McCaffrey, K. J. W., Lonergan, L. & Wilkinson, J. J.) Geol. Soc. Lond. Spec. Pub. 155 123–140 (GSL, 1999)
    Google Scholar
  24. Sibson, R. H. in Deformation of the Continental Crust: the Legacy of Mike Coward Geol. Soc. Lond. Spec. Publ. 272 519–532 (GSL, 2007)
    Google Scholar
  25. Wannamaker, P. E. et al. Fluid generation and pathways beneath an active compressional orogen, the New Zealand Southern Alps, inferred from magnetotelluric data. J. Geophys. Res. 107 10.1029/2001JB000186 (2002)
  26. Patro, P. K. & Egbert, G. D. Regional conductivity structure of Cascadia: preliminary results from 3D inversion of USArray transportable array magnetotelluric data. Geophys. Res. Lett. 35 10.1029/2008GL035326 (2008)
  27. Brasse, H. & Eydam, D. Electrical conductivity beneath the Bolivian orocline and its relation to subduction processes at the South American continental margin. J. Geophys. Res. 113 10.1029/2007JB005142 (2008)
  28. Jiracek, G. R., Gonzalez, V. M., Caldwell, T. G., Wannamaker, P. E. & Kilb, D. in A Continental Boundary: Tectonics at South Island, New Zealand (eds Okaya, D., Stern, T. & Davey, F.) Geophys. Monogr. Ser. 175 75–94 (Am. Geophys. Union, 2007)
    Google Scholar
  29. Upton, P. & Koons, P. O. in A Continental Boundary: Tectonics at South Island, New Zealand (eds Okaya, D., Stern, T. & Davey, F.) Geophys. Monogr. Ser. 175 253–270 (Am. Geophys. Union, 2007)
    Book Google Scholar
  30. Beavan, J., Ellis, S. & Wallace, L. in A Continental Boundary: Tectonics at South Island, New Zealand (eds Okaya, D., Stern, T. & Davey, F.) Geophys. Monogr. Ser. 175 75–94 (Am. Geophys. Union, 2007)
    Book Google Scholar
  31. Vozoff, K. in Electromagnetic Methods in Applied Geophysics (ed. Nabighian, M. N.)2B 641–711 (Soc. Explor. Geophys., 1991)
    Book Google Scholar
  32. Booker, J. R., Favetto, A. & Pomposiello, M. C. Low electrical resistivity associated with plunging of the Nazca flat slab beneath Argentina. Nature 429, 399–404 (2004)
    Article ADS CAS Google Scholar
  33. Petiau, G. & Dupis, A. Noise, temperature coefficient, and long time stability of electrodes for telluric observations. Geophys. Prospect. 28, 792–804 (1980)
    Article ADS Google Scholar
  34. Wannamaker, P. E. et al. Magnetotelluric surveying and monitoring at the Coso geothermal area, California, in support of the Enhanced Geothermal Systems concept: survey parameters and initial results. Proc. Workshop Geothermal Reservoir Engr. SGP-TR-175 1–8 (Stanford University, 2004)
  35. Jones, A. G., Chave, A. D., Egbert, G., Auld, D. & Bahr, K. A comparison of techniques for magnetotelluric response function estimation. J. Geophys. Res. 94, 14201–14213 (1989)
    Article ADS Google Scholar
  36. Caldwell, T. G., Bibby, H. M. & Brown, C. The magnetotelluric phase tensor. Geophys. J. Int. 158, 457–469 (2004)
    Article ADS CAS Google Scholar
  37. Wannamaker, P. E. in Three-Dimensional Electromagnetics (ed Oristaglio, M. & Spies, B.) Geophys. Devel. Ser. 7 349–374 (Soc. Explor. Geophys., 1999)
    Book Google Scholar
  38. Wannamaker, P. E. et al. Lithospheric dismemberment and magmatic processes of the Great Basin-Colorado Plateau transition, Utah, implied from magnetotellurics. Geochem. Geophys. Geosyst. 9 Q05019 10.1029/2007GC001886 (2008)
    Article ADS Google Scholar

Download references