Lambeth, J. D. NOX enzymes and the biology of reactive oxygen. Nature Rev. Immunol.4, 181–189 (2004) ArticleCAS Google Scholar
Bedard, K. & Krause, K. H. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol. Rev.87, 245–313 (2007) ArticleCAS Google Scholar
Vignais, P. V. The superoxide-generating NADPH oxidase: structural aspects and activation mechanism. Cell. Mol. Life Sci.59, 1428–1459 (2002) ArticleCAS Google Scholar
Merrill, A. H. & McCormick, D. B. Preparation of flavin 5′-phosphates using immobilized flavokinase. Methods Enzymol.66, 287–290 (1980) ArticleCAS Google Scholar
Kim, Y. S., Morgan, M. J., Choksi, S. & Liu, Z. G. TNF-induced activation of the Nox1 NADPH oxidase and its role in the induction of necrotic cell death. Mol. Cell26, 675–687 (2007) ArticleCAS Google Scholar
Hsu, H., Xiong, J. & Goeddel, D. V. The TNF receptor 1-associated protein TRADD signals cell death and NF-κB activation. Cell81, 495–504 (1995) ArticleCAS Google Scholar
Zhang, S. Q., Kovalenko, A., Cantarella, G. & Wallach, D. Recruitment of the IKK signalosome to the p55 TNF receptor: RIP and A20 bind to NEMO (IKKγ) upon receptor stimulation. Immunity12, 301–311 (2000) ArticleCAS Google Scholar
Micheau, O. & Tschopp, J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell114, 181–190 (2003) ArticleCAS Google Scholar
Adam-Klages, S. et al. FAN, a novel WD-repeat protein, couples the p55 TNF-receptor to neutral sphingomyelinase. Cell86, 937–947 (1996) ArticleCAS Google Scholar
Tsao, D. H., Hum, W. T., Hsu, S., Malakian, K. & Lin, L. L. The NMR structure of the TRADD death domain, a key protein in the TNF signaling pathway. J. Biomol. NMR39, 337–342 (2007) ArticleCAS Google Scholar
Karthikeyan, S. et al. Crystal structure of human riboflavin kinase reveals a β barrel fold and a novel active site arch. Structure11, 265–273 (2003) ArticleCAS Google Scholar
Schneider-Brachert, W. et al. Compartmentalization of TNF receptor 1 signaling: internalized TNF receptosomes as death signaling vesicles. Immunity21, 415–428 (2004) ArticleCAS Google Scholar
Ermolaeva, M. A. et al. Function of TRADD in tumor necrosis factor receptor 1 signaling and in TRIF-dependent inflammatory responses. Nature Immunol.9, 1037–1046 (2008) ArticleCAS Google Scholar
Rodriguez, C. I. et al. High-efficiency deleter mice show that FLPe is an alternative to Cre-loxP. Nature Genet.25, 139–140 (2000) ArticleCAS Google Scholar
Stuehr, D. J. Mammalian nitric oxide synthases. Biochim. Biophys. Acta1411, 217–230 (1999) ArticleCAS Google Scholar
Ross, N. S. & Hansen, T. P. Riboflavin deficiency is associated with selective preservation of critical flavoenzyme-dependent metabolic pathways. Biofactors3, 185–190 (1992) CASPubMed Google Scholar
Peitz, M., Pfannkuche, K., Rajewsky, K. & Edenhofer, F. Ability of the hydrophobic FGF and basic TAT peptides to promote cellular uptake of recombinant Cre recombinase: a tool for efficient genetic engineering of mammalian genomes. Proc. Natl Acad. Sci. USA99, 4489–4494 (2002) ArticleADSCAS Google Scholar
Kuhn, R., Schwenk, F., Aguet, M. & Rajewsky, K. Inducible gene targeting in mice. Science269, 1427–1429 (1995) ArticleADSCAS Google Scholar
Ho, A., Schwarze, S. R., Mermelstein, S. J., Waksman, G. & Dowdy, S. F. Synthetic protein transduction domains: enhanced transduction potential in vitro and in vivo . Cancer Res.61, 474–477 (2001) CASPubMed Google Scholar
Hordijk, P. L. Regulation of NADPH oxidases: the role of Rac proteins. Circ. Res.98, 453–462 (2006) ArticleCAS Google Scholar
Hashida, S. et al. Binding of FAD to cytochrome b 558 is facilitated during activation of the phagocyte NADPH oxidase, leading to superoxide production. J. Biol. Chem.279, 26378–26386 (2004) ArticleCAS Google Scholar
Tsunawaki, S. & Nathan, C. F. Enzymatic basis of macrophage activation. Kinetic analysis of superoxide production in lysates of resident and activated mouse peritoneal macrophages and granulocytes. J. Biol. Chem.259, 4305–4312 (1984) CASPubMed Google Scholar
El-Benna, J., Dang, P. M. & Gougerot-Pocidalo, M. A. Priming of the neutrophil NADPH oxidase activation: role of p47phox phosphorylation and NOX2 mobilization to the plasma membrane. Semin. Immunopathol.30, 279–289 (2008) ArticleCAS Google Scholar
Sheppard, F. R. et al. Structural organization of the neutrophil NADPH oxidase: phosphorylation and translocation during priming and activation. J. Leukoc. Biol.78, 1025–1042 (2005) ArticleCAS Google Scholar
Lin, Y. et al. Tumor necrosis factor-induced nonapoptotic cell death requires receptor-interacting protein-mediated cellular reactive oxygen species accumulation. J. Biol. Chem.279, 10822–10828 (2004) ArticleCAS Google Scholar
Fiers, W., Beyaert, R., Declercq, W. & Vandenabeele, P. More than one way to die: apoptosis, necrosis and reactive oxygen damage. Oncogene18, 7719–7730 (1999) ArticleCAS Google Scholar
Kamata, H. et al. Reactive oxygen species promote TNFα-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell120, 649–661 (2005) ArticleCAS Google Scholar
White, D. J., Merod, R., Thomasson, B. & Hartzell, P. L. GidA is an FAD-binding protein involved in development of Myxococcus xanthus . Mol. Microbiol.42, 503–517 (2001) ArticleCAS Google Scholar
Kruisbeek, A. M. & Vogel, S. N. in Current Protocols in Immunology Vol. 3 (ed. Coligan, J. E. et al.) p. 14.5.1 (John Wiley, 1999) Google Scholar
Wiegmann, K. et al. Requirement of FADD for tumor necrosis factor-induced activation of acid sphingomyelinase. J. Biol. Chem.274, 5267–5270 (1999) ArticleCAS Google Scholar