Structure of a tetrameric MscL in an expanded intermediate state (original) (raw)

References

  1. Kung, C. A possible unifying principle for mechanosensation. Nature 436, 647–654 (2005)
    ADS CAS PubMed Google Scholar
  2. Sukharev, S. & Corey, D. P. Mechanosensitive channels: multiplicity of families and gating paradigms. Sci. STKE 2004, 1–24 (2004)
    Google Scholar
  3. Booth, I. R., Edwards, M. D., Black, S., Schumann, U. & Miller, S. Mechanosensitive channels in bacteria: signs of closure? Nature Rev. Microbiol. 5, 431–440 (2007)
    CAS Google Scholar
  4. Sukharev, S. I., Blount, P., Martinac, B., Blattner, F. R. & Kung, C. A large-conductance mechanosensitive channel in E. coli encoded by mscL alone. Nature 368, 265–268 (1994)
    ADS CAS PubMed Google Scholar
  5. Chang, G., Spencer, R. H., Lee, A. T., Barclay, M. T. & Rees, D. C. Structure of the MscL homolog from Mycobacterium tuberculosis: a gated mechanosensitive ion channel. Science 282, 2220–2226 (1998)
    ADS CAS PubMed Google Scholar
  6. Steinbacher, S., Bass, R., Strop, P. & Rees, D. C. in Current Topics in Membranes. Mechanosensitive Ion Channels, Part A (ed. Hamill, O. P.) 1–24 (Academic, 2007)
    Google Scholar
  7. Sukharev, S. I., Sigurdson, W. J., Kung, C. & Sachs, F. Energetic and spatial parameters for gating of the bacterial large conductance mechanosensitive channel, MscL. J. Gen. Physiol. 113, 525–540 (1999)
    CAS PubMed PubMed Central Google Scholar
  8. Sukharev, S., Betanzos, M., Chiang, C.-S. & Guy, H. R. The gating mechanism of the large mechanosensitive channel MscL. Nature 409, 720–724 (2001)
    ADS CAS PubMed Google Scholar
  9. Perozo, E., Cortes, D. M., Sompornpisut, P., Kloda, A. & Martinac, B. Open channel structure of MscL and the gating mechanism of mechanosensitive channels. Nature 418, 942–948 (2002)
    ADS CAS PubMed Google Scholar
  10. Anishkin, A. & Sukharev, S. State-stabilizing interactions in the bacterial mechanosensitive channel gating and adaptation. J. Biol. Chem. 284, 19153–19157 (2009)
    CAS PubMed PubMed Central Google Scholar
  11. Moe, P. C., Blount, P. & Kung, C. Functional and structural conservation in the mechanosensitive channel MscL implicates elements crucial for mechanosensation. Mol. Microbiol. 28, 583–592 (1998)
    CAS PubMed Google Scholar
  12. Levina, N. et al. Protection of Escherichia coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: identification of genes required for MscS activity. EMBO J. 18, 1730–1737 (1999)
    CAS PubMed PubMed Central Google Scholar
  13. Blount, P., Sukharev, S. I., Schroeder, M. J., Nagle, S. K. & Kung, C. Single residue substitutions that change the gating properties of a mechanosensitive channel in Escherichia coli. Proc. Natl Acad. Sci. USA 93, 11652–11657 (1996)
    ADS CAS PubMed Google Scholar
  14. Häse, C. C., Le Dain, A. C. & Martinac, B. Molecular dissection of the large mechanosensitive ion channel (MscL) of E. coli: mutants with altered channel gating and pressure sensitivity. J. Membr. Biol. 157, 17–25 (1997)
    PubMed Google Scholar
  15. Niegowski, D. & Eshaghi, S. The CorA family: structure and function revisited. Cell. Mol. Life Sci. 64, 2564–2574 (2007)
    CAS PubMed Google Scholar
  16. Cogdell, R. J. et al. The structure and function of the LH2 (B800–850) complex from the purple photosynthetic bacterium Rhodopseudomonas acidophila strain 10050. Prog. Biophys. Mol. Biol. 68, 1–27 (1997)
    CAS PubMed Google Scholar
  17. Stock, D., Leslie, A. G. & Walker, J. E. Molecular architecture of the rotary motor in ATP synthase. Science 286, 1700–1705 (1999)
    CAS PubMed Google Scholar
  18. Sukharev, S., Durell, S. R. & Guy, H. R. Structural models of the MscL gating mechanism. Biophys. J. 81, 917–936 (2001)
    CAS PubMed PubMed Central Google Scholar
  19. Strop, P., Bass, R. & Rees, D. C. Prokaryotic mechanosensitive channels. Adv. Protein Chem. 63, 177–209 (2003)
    CAS PubMed Google Scholar
  20. Beckstein, O. & Sansom, M. S. P. The influence of geometry, surface character, and flexibility on the permeation of ions and water through biological pores. Phys. Biol. 1, 42–52 (2004)
    ADS CAS PubMed Google Scholar
  21. Cruickshank, C. C., Minchin, R. F., Le Dain, A. C. & Martinac, B. Estimation of the pore size of the large-conductance mechanosensitive ion channel of Escherichia coli. Biophys. J. 73, 1925–1931 (1997)
    CAS PubMed PubMed Central Google Scholar
  22. Ajouz, B., Berrier, C., Garrigues, A., Besnard, M. & Ghazi, A. Release of thioredoxin via the mechanosensitive channel MscL during osmotic downshock of Escherichia coli cells. J. Biol. Chem. 273, 26670–26674 (1998)
    CAS PubMed Google Scholar
  23. van den Bogaart, G., Krasnikov, V. & Poolman, B. Dual-color fluorescence-burst analysis to probe protein efflux through the mechanosensitive channel MscL. Biophys. J. 92, 1233–1240 (2007)
    CAS PubMed Google Scholar
  24. Yoshimura, K., Usukura, J. & Sokabe, M. Gating-associated conformational changes in the mechanosensitive channel MscL. Proc. Natl Acad. Sci. USA 105, 4033–4038 (2008)
    ADS CAS PubMed Google Scholar
  25. Strop, P. & Brunger, A. T. Refractive index-based determination of detergent concentration and its application to the study of membrane proteins. Protein Sci. 14, 2207–2211 (2005)
    CAS PubMed PubMed Central Google Scholar
  26. Spencer, R. H. & Rees, D. C. The α-helix and the organization and gating of channels. Annu. Rev. Biophys. Biomol. Struct. 31, 207–233 (2002)
    CAS PubMed Google Scholar
  27. Wang, W. et al. The structure of an open form of an E. coli mechanosensitive channel at 3.45 Å resolution. Science 321, 1179–1183 (2008)
    ADS CAS PubMed PubMed Central Google Scholar
  28. Maurer, J. A., Elmore, D. E., Lester, H. A. & Dougherty, D. A. Comparing and contrasting Escherichia coli and Mycobacterium tuberculosis mechanosensitive channels (MscL). J. Biol. Chem. 275, 22238–22244 (2000)
    CAS PubMed Google Scholar
  29. Tsai, I. J. et al. The role of the periplasmic loop residue glutamine 65 for MscL mechanosensitivity. Eur. Biophys. J. 34, 403–412 (2005)
    CAS PubMed Google Scholar
  30. Ajouz, B., Berrier, C., Besnard, M., Martinac, B. & Ghazi, A. Contributions of the different extramembranous domains of the mechanosensitive ion channel MscL to its response to membrane tension. J. Biol. Chem. 275, 1015–1022 (2000)
    CAS PubMed Google Scholar
  31. Lusty, C. A gentle vapor-diffusion technique for cross-linking of protein crystals for cryocrystallography. J. Appl. Cryst. 32, 106–112 (1999)
    CAS Google Scholar
  32. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. A 64, 112–122 (2008)
    ADS CAS PubMed MATH Google Scholar
  33. Read, R. Improved Fourier coefficients for maps using phases from partial structures with errors. Acta Crystallogr. A 42, 140–149 (1986)
    Google Scholar
  34. Collaborative Computational Project, 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994)
    Google Scholar
  35. Cowtan, K. DM: an automated procedure for phase improvement by density modification. Joint CCP4 ESF-EACBM Newslett. Protein Crystallogr. 31, 34–38 (1994)
    Google Scholar
  36. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991)
    PubMed Google Scholar
  37. Brunger, A. T. Version 1.2 of the crystallography and NMR system. Nature Protocols 2, 2728–2733 (2007)
    CAS PubMed Google Scholar
  38. Laskowski, R. A., MacArthur, M. W., Moss, D. S. & Thornton, J. M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Cryst. 26, 283–291 (1993)
    CAS Google Scholar
  39. Larkin, M. A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007)
    CAS PubMed Google Scholar
  40. Gouet, P., Courcelle, E., Stuart, D. I. & Metoz, F. ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics 15, 305–308 (1999)
    CAS PubMed Google Scholar
  41. DeLano, W. L. The PyMOL User's Manual (Delano Scientific, 2002)
    Google Scholar
  42. Smart, O. S., Neduvelil, J. G., Wang, X. N., Wallace, B. A. & Sansom, M. S. P. HOLE: a program for the analysis of the pore dimensions of ion channel structural models. J. Mol. Graph. Model. 14, 354–360 (1996)
    CAS Google Scholar
  43. Hutchinson, E. G. & Thornton, J. M. PROMOTIF–a program to identify and analyze structural motifs in proteins. Protein Sci. 5, 212–220 (1996)
    CAS PubMed PubMed Central Google Scholar
  44. Iscla, I., Wray, R. & Blount, P. On the structure of the N-terminal domain of the MscL channel: helical bundle or membrane interface. Biophys. J. 95, 2283–2291 (2008)
    ADS CAS PubMed PubMed Central Google Scholar
  45. Häse, C. C., Le Dain, A. C. & Martinac, B. Purification and functional reconstitution of the recombinant large mechanosensitive ion channel (MscL) of Escherichia coli. J. Biol. Chem. 270, 18329–18334 (1995)
    PubMed Google Scholar
  46. Sukharev, S. I., Martinac, B., Arshavsky, V. Y. & Kung, C. Two types of mechanosensitive channels in the Escherichia coli cell envelope: solubilization and functional reconstitution. Biophys. J. 65, 177–183 (1993)
    ADS CAS PubMed PubMed Central Google Scholar

Download references