Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria (original) (raw)

References

  1. Schleper, C., Jurgens, G. & Jonuscheit, M. Genomic studies of uncultivated archaea. Nature Rev. Microbiol. 3, 479–488 (2005)
    Article CAS Google Scholar
  2. Francis, C. A., Roberts, K. J., Beman, J. M., Santoro, A. E. & Oakley, B. B. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc. Natl Acad. Sci. USA 102, 14683–14688 (2005)
    Article ADS CAS Google Scholar
  3. Könneke, M. et al. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437, 543–546 (2005)
    Article ADS Google Scholar
  4. de la Torre, J. R., Walker, C. B., Ingalls, A. E., Könneke, M. & Stahl, D. A. Cultivation of a thermophilic ammonia oxidizing archaeon synthesizing crenarchaeol. Environ. Microbiol. 10, 810–818 (2008)
    Article CAS Google Scholar
  5. Wuchter, C. et al. Archaeal nitrification in the ocean. Proc. Natl Acad. Sci. USA 103, 12317–12322 (2006)
    Article ADS CAS Google Scholar
  6. Hatzenpichler, R. et al. A moderately thermophilic ammonia-oxidizing crenarchaeote from a hot spring. Proc. Natl Acad. Sci. USA 105, 2134–2139 (2008)
    Article ADS CAS Google Scholar
  7. Mincer, T. J. et al. Quantitative distribution of presumptive archaeal and bacterial nitrifiers in Monterey Bay and the North Pacific Subtropical Gyre. Environ. Microbiol. 9, 1162–1175 (2007)
    Article CAS Google Scholar
  8. Prosser, J. I. & Nicol, G. W. Relative contributions of archaea and bacteria to aerobic ammonia oxidation in the environment. Environ. Microbiol. 10, 2931–2941 (2008)
    Article CAS Google Scholar
  9. Hashimoto, L. K., Kaplan, W. A., Wofsy, S. C. & McElroy, M. B. Transformations of fixed nitrogen and N2O in the Cariaco Trench. Deep-Sea Res. 30, 575–590 (1983)
    Article ADS CAS Google Scholar
  10. Olson, R. J. 15N tracer studies of the primary nitrite maximum. J. Mar. Res. 39, 203–226 (1981)
    CAS Google Scholar
  11. Yool, A., Martin, A. P., Fernandez, C. & Clark, D. R. The significance of nitrification for oceanic new production. Nature 447, 999–1002 (2007)
    Article ADS CAS Google Scholar
  12. Gruber, N. & Galloway, J. N. An Earth-system perspective of the global nitrogen cycle. Nature 451, 293–296 (2008)
    Article ADS CAS Google Scholar
  13. Prosser, J. I. in Advances in Microbial Physiology (eds Rose, A. H. & Tempest, D. W.) 125–181 (Academic, 1989)
    Google Scholar
  14. Ward, B. B. in Nitrification (ed. Prosser, J. I.) 157–184 (IRL Press, 1986)
    Google Scholar
  15. Bollmann, A., Bär-Gilissen, M.-J. & Laanbroek, H. J. Growth at low ammonium concentrations and starvation response as potential factors involved in niche differentiation among ammonia-oxidizing bacteria. Appl. Environ. Microbiol. 68, 4751–4757 (2002)
    Article CAS Google Scholar
  16. Agogué, H., Brink, M., Dinasquet, J. & Herndl, G. J. Major gradients in putatively nitrifying and non-nitrifying Archaea in the deep North Atlantic. Nature 456, 788–791 (2008)
    Article ADS Google Scholar
  17. Karner, M. B., DeLong, E. F. & Karl, D. M. Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature 409, 507–510 (2001)
    Article ADS CAS Google Scholar
  18. Kirchman, D. L., Elifantz, H., Dittel, A. I., Malmstrom, R. R. & Cottrell, M. T. Standing stocks and activity of Archaea and Bacteria in the western Arctic Ocean. Limnol. Oceanogr. 52, 495–507 (2007)
    Article ADS CAS Google Scholar
  19. Laanbroek, H. J. & Woldendorp, J. W. in Advances in Microbial Ecology (ed. Jones, J. G.) 275–304 (Plenum, 1995)
    Book Google Scholar
  20. Leininger, S. et al. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442, 806–809 (2006)
    Article ADS CAS Google Scholar
  21. Stark, J. M. & Firestone, M. K. Kinetic characteristics of ammonium-oxidizer communities in a California oak woodland-annual grassland. Soil Biol. Biochem. 28, 1307–1317 (1996)
    Article CAS Google Scholar
  22. Ward, B. B., Talbot, M. C. & Perry, M. J. Contributions of phytoplankton and nitrifying bacteria to ammonium and nitrite dynamics in coastal waters. Cont. Shelf Res. 3, 383–398 (1984)
    Article ADS Google Scholar
  23. Karl, D. M., Knauer, G. A., Martin, J. H. & Ward, B. B. Bacterial chemolithotrophy in the ocean is associated with sinking particles. Nature 309, 54–56 (1984)
    Article ADS CAS Google Scholar
  24. Phillips, C. J., Smith, Z., Embley, T. M. & Prosser, J. I. Phylogenetic differences between particle-associated and planktonic ammonia-oxidizing bacteria of the β subdivision of the class Proteobacteria in the northwestern Mediterranean Sea. Appl. Environ. Microbiol. 65, 779–786 (1999)
    CAS PubMed PubMed Central Google Scholar
  25. Freitag, T. E., Chang, L. & Prosser, J. I. Changes in the community structure and activity of betaproteobacterial ammonia-oxidizing sediment bacteria along a freshwater-marine gradient. Environ. Microbiol. 8, 684–696 (2006)
    Article CAS Google Scholar
  26. Button, D. K., Robertson, B. R., Lepp, P. W. & Schmidt, T. M. A small, dilute-cytoplasm, high-affinity, novel bacterium isolated by extinction culture and having kinetic constants compatible with growth at ambient concentrations of dissolved nutrients in seawater. Appl. Environ. Microbiol. 64, 4467–4476 (1998)
    CAS PubMed PubMed Central Google Scholar
  27. Button, D. K. Nutrient uptake by microorganisms according to kinetic parameters from theory as related to cytoarchitecture. Microbiol. Mol. Biol. Rev. 62, 636–645 (1998)
    CAS PubMed PubMed Central Google Scholar
  28. Kirchman, D. L. The uptake of inorganic nutrients by heterotrophic bacteria. Microb. Ecol. 28, 255–271 (1994)
    Article CAS Google Scholar
  29. Eppley, R. W., Rogers, J. N. & McCarthy, J. J. Half-saturation constants for uptake of nitrate and ammonium by marine phytoplankton. Limnol. Oceanogr. 14, 912–920 (1969)
    Article ADS CAS Google Scholar
  30. Ouverney, C. C. & Fuhrman, J. A. Marine planktonic archaea take up amino acids. Appl. Environ. Microbiol. 66, 4829–4833 (2000)
    Article CAS Google Scholar
  31. Berube, P. M., Samudrala, R. & Stahl, D. A. Transcription of all amoC copies is associated with recovery of Nitrosomonas europaea from ammonia starvation. J. Bacteriol. 189, 3935–3944 (2007)
    Article CAS Google Scholar
  32. Rotthauwe, J.-H., Witzel, K. P. & Liesack, W. The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl. Environ. Microbiol. 63, 4704–4712 (1997)
    CAS PubMed PubMed Central Google Scholar
  33. Stickland, J. D. H. & Parsons, T. R. A Practical Handbook of Seawater Analysis (Fisheries Research Board of Canada, 1972)
    Google Scholar
  34. Holmes, R. M., Aminot, A., Kérouel, R., Hooker, B. A. & Peterson, B. J. A simple and precise method for measuring ammonium in marine and freshwater ecosystems. Can. J. Fish. Aquat. Sci. 56, 1801–1809 (1999)
    Article CAS Google Scholar
  35. Lunau, M., Lemke, A., Walther, K., Martens-Habbena, W. & Simon, M. An improved method for counting bacteria from sediments and turbid environments by epifluorescence microscopy. Environ. Microbiol. 7, 961–968 (2005)
    Article Google Scholar
  36. Gundersen, J. K., Ramsing, N. B. & Glud, R. N. Predicting the signal of O2 microsensors from physical dimensions, temperature, salinity, and O2 concentration. Limnol. Oceanogr. 43, 1932–1937 (1998)
    Article ADS CAS Google Scholar
  37. Suzuki, I., Dular, U. & Kwok, S. C. Ammonia or ammonium ion as substrate for oxidation by Nitrosomonas europaea cells and extracts. J. Bacteriol. 120, 556–558 (1974)
    CAS PubMed PubMed Central Google Scholar
  38. Ward, B. B. Kinetic studies on ammonia and methane oxidation by Nitrosococcus oceanus . Arch. Microbiol. 147, 126–133 (1987)
    Article CAS Google Scholar
  39. Bollmann, A., Schmidt, I., Saunders, A. M. & Nicolaisen, M. H. Influence of starvation on potential ammonia-oxidizing activity and amoA mRNA levels of Nitrosospira briensis . Appl. Environ. Microbiol. 71, 1276–1282 (2005)
    Article CAS Google Scholar
  40. Button, D. K. Kinetics of nutrient-limited transport and microbial growth. Microbiol. Rev. 49, 270–297 (1985)
    CAS PubMed PubMed Central Google Scholar
  41. Eppley, R. W. & Renger, E. H. Nitrogen assimilation of an oceanic diatom in nitrogen-limited continuous culture. J. Phycol. 10, 15–23 (1974)
    CAS Google Scholar
  42. Glover, H. E. The relationship between inorganic nitrogen oxidation and organic-carbon production in batch and chemostat cultures of marine nitrifying bacteria. Arch. Microbiol. 142, 45–50 (1985)
    Article CAS Google Scholar
  43. Jiang, Q. Q. & Bakken, L. R. Comparison of Nitrosospira strains isolated from terrestrial environments. FEMS Microbiol. Ecol. 30, 171–186 (1999)
    Article CAS Google Scholar
  44. Keen, G. A. & Prosser, J. I. Steady state and transient growth of autotrophic nitrifying bacteria. Arch. Microbiol. 147, 73–79 (1987)
    Article CAS Google Scholar
  45. Loureiro, S. et al. The significance of organic nutrients in the nutrition of Pseudo-nitzschia delicatissima (Bacillariophyceae). J. Plankt. Res. 31, 399–410 (2009)
    Article CAS Google Scholar
  46. Reay, D. S., Nedwell, D. B., Priddle, J. & Ellis-Evans, J. C. Temperature dependence of inorganic nitrogen uptake: reduced affinity for nitrate at suboptimal temperatures in both algae and bacteria. Appl. Environ. Microbiol. 65, 2577–2584 (1999)
    CAS PubMed PubMed Central Google Scholar
  47. Stehr, G., Böttcher, B., Dittberner, P., Rath, G. & Koops, H. P. The ammonia-oxidizing nitrifying population of the River Elbe estuary. FEMS Microbiol. Ecol. 17, 177–186 (1995)
    Article CAS Google Scholar
  48. Suwa, Y., Imamura, Y., Suzuki, T., Tashiro, T. & Urushigawa, Y. Ammonia-oxidizing bacteria with different sensitivities to (NH4)2SO4 in activated sludges. Wat. Res. 28, 1523–1532 (1994)
    Article CAS Google Scholar
  49. Ward, B. B. Kinetics of ammonia oxidation by a marine nitrifying bacterium: methane as a substrate analogue. Microb. Ecol. 19, 211–225 (1990)
    Article CAS Google Scholar
  50. Watson, S. W. Characteristics of a marine nitrifying bacterium, Nitrosocystis oceanus sp. N. Limnol. Oceanogr. 10, R274–R289 (1965)
    Article ADS Google Scholar
  51. Clegg, S. L. & Whitfield, M. A chemical model of seawater including dissolved ammonia and the stoichiometric dissociation constant of ammonia in estuarine water and seawater from -2 to 40°C. Geochim. Cosmochim. Acta 59, 2403–2421 (1995)
    Article ADS CAS Google Scholar
  52. Lee, S. & Fuhrman, J. A. Relationships between biovolume and biomass of naturally derived marine bacterioplankton. Appl. Environ. Microbiol. 53, 1298–1303 (1987)
    CAS PubMed PubMed Central Google Scholar
  53. Simon, M. & Azam, F. Protein content and protein synthesis rates of planktonic marine bacteria. Mar. Ecol. Prog. Ser. 51, 201–213 (1989)
    Article ADS CAS Google Scholar

Download references