Inspiration and application in the evolution of biomaterials (original) (raw)
References
Ratner, B. D. & Bryant, S. J. Biomaterials: where we have been and where we are going. Annu. Rev. Biomed. Eng.6, 41–75 (2004).This is an excellent, comprehensive review of the history of the biomaterials field. ArticleCAS Google Scholar
Anderson, J. M., Rodriguez, A. & Chang, D. T. Foreign body reaction to biomaterials. Semin. Immunol.20, 86–100 (2008). ArticleCAS Google Scholar
Mroz, T., Yamashita, T. & Lieberman, I. The on- and off-label use of rhBMP-2 (INFUSE) in Medicare and non-Medicare patients. Spine J.8, 41S–42S (2008). Article Google Scholar
Shahani, S. Advanced Drug Delivery Systems: New Developments, New Technologies. Report No. PHM006F (Business Communications Company, 2006). Google Scholar
Shih, W. M., Quispe, J. D. & Joyce, G. F. A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron. Nature427, 618–621 (2004). ArticleADSCAS Google Scholar
Shin, H., Zygourakis, K., Farach-Carson, M. C., Yaszemski, M. J. & Mikos, A. G. Attachment, proliferation, and migration of marrow stromal osteoblasts cultured on biomimetic hydrogels modified with an osteopontin-derived peptide. Biomaterials25, 895–906 (2004). Article Google Scholar
Massia, S. P. & Hubbell, J. A. Covalently attached GRGD on polymer surfaces promotes biospecific adhesion of mammalian cells. Ann. NY Acad. Sci.589, 261–270 (1990). ArticleADSCAS Google Scholar
Silva, G. A. et al. Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science303, 1352–1355 (2004). ArticleADSCAS Google Scholar
Arnold, M. et al. Activation of integrin function by nanopatterned adhesive surfaces. ChemPhysChem5, 383–388 (2004). ArticleCAS Google Scholar
Wosnick, J. H. & Shoichet, M. S. Three-dimensional chemical patterning of transparent hydrogels. Chem. Mater.20, 55–60 (2008). ArticleCAS Google Scholar
Carrico, I. S. et al. Lithographic patterning of photoreactive cell-adhesive proteins. J. Am. Chem. Soc.129, 4874–4875 (2007). ArticleCAS Google Scholar
Lutolf, M. P. et al. Repair of bone defects using synthetic mimetics of collagenous extracellular matrices. Nature Biotechnol.21, 513–518 (2003). This paper describes how materials can be designed to mimic key aspects of natural ECM (for example enzyme-mediated degradation) and function as templates for tissue regeneration. ArticleCAS Google Scholar
Shin, K., Jayasuriya, A. C. & Kohn, D. H. Effect of ionic activity products on the structure and composition of mineral self assembled on three-dimensional poly(lactide-co-glycolide) scaffolds. J. Biomed. Mater. Res. A83, 1076–1086 (2007). Article Google Scholar
Li, Y. J., Chung, E. H., Rodriguez, R. T., Firpo, M. T. & Healy, K. E. Hydrogels as artificial matrices for human embryonic stem cell self-renewal. J. Biomed. Mater. Res. A79, 1–5 (2006). Article Google Scholar
Benoit, D. S., Schwartz, M. P., Durney, A. R. & Anseth, K. S. Small functional groups for controlled differentiation of hydrogel-encapsulated human mesenchymal stem cells. Nature Mater.7, 816–823 (2008). ArticleADSCAS Google Scholar
Shin'oka, T. et al. Midterm clinical results of tissue-engineered vascular autografts seeded with autologous bone marrow cells. J. Thorac. Cardiovasc. Surg.129, 1330–1338 (2005). Article Google Scholar
Richardson, T. P., Peters, M. C., Ennett, A. B. & Mooney, D. J. Polymeric systems for dual growth factor delivery. Nature Biotechnol.19, 1029–1034 (2001). ArticleCAS Google Scholar
Phillips, J. E., Burns, K. L., Le Doux, J. M., Guldberg, R. E. & Garcia, A. J. Engineering graded tissue interfaces. Proc. Natl Acad. Sci. USA105, 12170–12175 (2008). ArticleADSCAS Google Scholar
Fan, V. H. et al. Tethered epidermal growth factor provides a survival advantage to mesenchymal stem cells. Stem Cells25, 1241–1251 (2007). ArticleCAS Google Scholar
Tsapis, N., Bennett, D., Jackson, B., Weitz, D. A. & Edwards, D. A. Trojan particles: large porous carriers of nanoparticles for drug delivery. Proc. Natl Acad. Sci. USA99, 12001–12005 (2002). ArticleADSCAS Google Scholar
Reddy, S. T. et al. Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nature Biotechnol.25, 1159–1164 (2007). ArticleCAS Google Scholar
Park, J. H. et al. Systematic surface engineering of magnetic nanoworms for in vivo tumor targeting. Small5, 694–700 (2009). ArticleCAS Google Scholar
Silva, E. A., Kim, E. S., Kong, H. J. & Mooney, D. J. Material-based deployment enhances the efficacy of endothelial progenitor cells. Proc. Natl Acad. Sci. USA105, 14347–14352 (2008). ArticleADSCAS Google Scholar
Ali, O. A., Huebsch, N., Cao, L., Dranoff, G. & Mooney, D. J. Infection-mimicking materials to program dendritic cells in situ . Nature Mater.8, 151–158 (2009). This paper describes how biomaterials can be designed to regulate host biology at a distance by recruiting, locally programming and subsequently dispersing target cell populations to produce potent biological responses. ADSCAS Google Scholar
Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell126, 677–689 (2006). This paper demonstrates the importance of physical properties of biomaterials in controlling cellular response. ArticleCAS Google Scholar
Tan, J. L. et al. Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc. Natl Acad. Sci. USA100, 1484–1489 (2003). ArticleADSCAS Google Scholar
Park, T. G. & Hoffman, A. S. Synthesis and characterization of pH- and or temperature-sensitive hydrogels. J. Appl. Polym. Sci.46, 659–671 (1992). ArticleCAS Google Scholar
Podual, K., Doyle, F. J. & Peppas, N. A. Glucose-sensitivity of glucose oxidase-containing cationic copolymer hydrogels having poly(ethylene glycol) grafts. J. Control. Release67, 9–17 (2000). ArticleCAS Google Scholar
Edelman, E. R., Brown, L., Taylor, J. & Langer, R. In vitro and in vivo kinetics of regulated drug release from polymer matrices by oscillating magnetic fields. J. Biomed. Mater. Res.21, 339–353 (1987). ArticleCAS Google Scholar
Alsberg, E., Feinstein, E., Joy, M. P., Prentiss, M. & Ingber, D. E. Magnetically-guided self-assembly of fibrin matrices with ordered nano-scale structure for tissue engineering. Tissue Eng.12, 3247–3256 (2006). ArticleCAS Google Scholar
Adams, D. S., Masi, A. & Levin, M. H+ pump-dependent changes in membrane voltage are an early mechanism necessary and sufficient to induce tail regeneration. Development134, 1323–1335 (2007). ArticleCAS Google Scholar
Martinez, A. W., Phillips, S. T. & Whitesides, G. M. Three-dimensional microfluidic devices fabricated in layered paper and tape. Proc. Natl Acad. Sci. USA105, 19606–19611 (2008). ArticleADSCAS Google Scholar
Khetani, S. R. & Bhatia, S. N. Microscale culture of human liver cells for drug development. Nature Biotechnol.26, 120–126 (2008). ArticleCAS Google Scholar
Nagrath, S. et al. Isolation of rare circulating tumor cells in cancer patients by microchip technology. Nature450, 1235–1239 (2007). ArticleADSCAS Google Scholar
Stern, E. et al. Label-free immunodetection with CMOS-compatible semiconducting nanowires. Nature445, 519–522 (2007). ArticleADSCAS Google Scholar
Gupta, V. K., Dubrovsky, T. B. & Abbott, N. L. Optical amplification of ligand–receptor binding using liquid crystals. Science279, 2077–2080 (1998). ArticleADSCAS Google Scholar
Madri, J. A., Pratt, B. M. & Tucker, A. M. Phenotypic modulation of endothelial cells by transforming growth factor-β depends upon the composition and organization of the extracellular matrix. J. Cell Biol.106, 1375–1384 (1988). ArticleCAS Google Scholar
Fischbach, C. et al. Cancer cell angiogenic capability is regulated by 3D culture and integrin engagement. Proc. Natl Acad. Sci. USA106, 399–404 (2009). ArticleADSCAS Google Scholar
Ghajar, C. M. et al. The effect of matrix density on the regulation of 3-D capillary morphogenesis. Biophys. J.94, 1930–1941 (2008). ArticleADSCAS Google Scholar
Xu, M. et al. Encapsulated three-dimensional culture supports the development of nonhuman primate secondary follicles. Biol. Reprod.81, 587–593 (2009). ArticleCAS Google Scholar
Khademhosseini, A., Langer, R., Borenstein, J. & Vacanti, J. P. Microscale technologies for tissue engineering and biology. Proc. Natl Acad. Sci. USA103, 2480–2487 (2006). ArticleADSCAS Google Scholar
Lee, H., Scherer, N. F. & Messersmith, P. B. A reversible wet/dry adhesive inspired by mussels and geckos. Nature448, 338–341 (2007). ArticleADSCAS Google Scholar
Jeong, K. H., Kim, J. & Lee, L. P. Biologically inspired artificial compound eyes. Science312, 557–561 (2006). ArticleADSCAS Google Scholar
Nam, K. T. et al. Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science312, 885–888 (2006). This paper discusses the engineering of non-medical materials through the templating of viruses. The precisely tuned patterns of spatial features of the natural organism promise distinct performance advantages. ArticleADSCAS Google Scholar
Needleman, D. J. et al. Higher-order assembly of microtubules by counterions: from hexagonal bundles to living necklaces. Proc. Natl Acad. Sci. USA101, 16099–16103 (2004). ArticleADSCAS Google Scholar
Sidorenko, A., Krupenkin, T., Taylor, A., Fratzl, P. & Aizenberg, J. Reversible switching of hydrogel-actuated nanostructures into complex micropatterns. Science315, 487–490 (2007). ArticleADSCAS Google Scholar
Omabegho, T., Sha, R. & Seeman, N. C. A bipedal DNA Brownian motor with coordinated legs. Science324, 67–71 (2009). ArticleADSCAS Google Scholar
Kyriakides, T. R. et al. The CC chemokine ligand, CCL2/MCP1, participates in macrophage fusion and foreign body giant cell formation. Am. J. Pathol.165, 2157–2166 (2004). ArticleCAS Google Scholar