MicroRNA-mediated integration of haemodynamics and Vegf signalling during angiogenesis (original) (raw)
References
Yashiro, K., Shiratori, H. & Hamada, H. Haemodynamics determined by a genetic programme govern asymmetric development of the aortic arch. Nature450, 285–288 (2007) ArticleADSCAS Google Scholar
Adamo, L. et al. Biomechanical forces promote embryonic haematopoiesis. Nature459, 1131–1135 (2009) ArticleADSCAS Google Scholar
Gimbrone, M. A. Jr, Topper, J. N., Nagel, T., Anderson, K. R. & Garcia-Cardena, G. Endothelial dysfunction, hemodynamic forces, and atherogenesis. Ann. NY Acad. Sci.902, 230–239, discussion 239–240 (2000) ArticleADSCAS Google Scholar
le Noble, F., Klein, C., Tintu, A., Pries, A. & Buschmann, I. Neural guidance molecules, tip cells, and mechanical factors in vascular development. Cardiovasc. Res.78, 232–241 (2008) ArticleCAS Google Scholar
Dekker, R. J. et al. Prolonged fluid shear stress induces a distinct set of endothelial cell genes, most specifically lung Kruppel-like factor (KLF2). Blood100, 1689–1698 (2002) ArticleCAS Google Scholar
Parmar, K. M. et al. Integration of flow-dependent endothelial phenotypes by Kruppel-like factor 2. J. Clin. Invest.116, 49–58 (2006) ArticleCAS Google Scholar
Lee, J. S. et al. Klf2 is an essential regulator of vascular hemodynamic forces in vivo. Dev. Cell11, 845–857 (2006) ArticleCAS Google Scholar
Anderson, M. J., Pham, V. N., Vogel, A. M., Weinstein, B. M. & Roman, B. L. Loss of unc45a precipitates arteriovenous shunting in the aortic arches. Dev. Biol.318, 258–267 (2008) ArticleCAS Google Scholar
Isogai, S., Horiguchi, M. & Weinstein, B. M. The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development. Dev. Biol.230, 278–301 (2001) ArticleCAS Google Scholar
Serluca, F. C., Drummond, I. A. & Fishman, M. C. Endothelial signaling in kidney morphogenesis: a role for hemodynamic forces. Curr. Biol.12, 492–497 (2002) ArticleCAS Google Scholar
Covassin, L. D., Villefranc, J. A., Kacergis, M. C., Weinstein, B. M. & Lawson, N. D. Distinct genetic interactions between multiple Vegf receptors are required for development of different blood vessel types in zebrafish. Proc. Natl Acad. Sci. USA103, 6554–6559 (2006) ArticleADSCAS Google Scholar
Nasevicius, A., Larson, J. & Ekker, S. C. Distinct requirements for zebrafish angiogenesis revealed by a VEGF-A morphant. Yeast17, 294–301 (2000) ArticleCAS Google Scholar
Siekmann, A. F. & Lawson, N. D. Notch signalling limits angiogenic cell behaviour in developing zebrafish arteries. Nature445, 781–784 (2007) ArticleADSCAS Google Scholar
Hellström, M. et al. Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature445, 776–780 (2007) ArticleADS Google Scholar
Sehnert, A. J. et al. Cardiac troponin T is essential in sarcomere assembly and cardiac contractility. Nature Genet.31, 106–110 (2002) ArticleCAS Google Scholar
Vermot, J. et al. Reversing blood flows act through klf2a to ensure normal valvulogenesis in the developing heart. PLoS Biol.7, e1000246 (2009) Article Google Scholar
Meadows, S. M., Salanga, M. C. & Krieg, P. A. Kruppel-like factor 2 cooperates with the ETS family protein ERG to activate Flk1 expression during vascular development. Development136, 1115–1125 (2009) ArticleCAS Google Scholar
Wienholds, E. et al. MicroRNA expression in zebrafish embryonic development. Science309, 310–311 (2005) ArticleADSCAS Google Scholar
Fish, J. E. et al. miR-126 regulates angiogenic signaling and vascular integrity. Dev. Cell15, 272–284 (2008) ArticleCAS Google Scholar
Wang, S. et al. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev. Cell15, 261–271 (2008) Article Google Scholar
Villefranc, J. A., Amigo, J. & Lawson, N. D. Gateway compatible vectors for analysis of gene function in the zebrafish. Dev. Dyn.236, 3077–3087 (2007) ArticleCAS Google Scholar
Nicoli, S., Ribatti, D., Cotelli, F. & Presta, M. Mammalian tumor xenografts induce neovascularization in zebrafish embryos. Cancer Res.67, 2927–2931 (2007) ArticleCAS Google Scholar
Westerfield, M. The Zebrafish Book (Univ. of Oregon Press, 1993) Google Scholar
Siekmann, A. F., Standley, C., Fogarty, K. E., Wolfe, S. A. & Lawson, N. D. Chemokine signaling guides regional patterning of the first embryonic artery. Genes Dev.23, 2272–2277 (2009) ArticleCAS Google Scholar
Lawson, N. D., Vogel, A. M. & Weinstein, B. M. sonic hedgehog and vascular endothelial growth factor act upstream of the Notch pathway during arterial endothelial differentiation. Dev. Cell3, 127–136 (2002) ArticleCAS Google Scholar
Rhodes, J. et al. Interplay of Pu.1 and Gata1 determines myelo-erythroid progenitor cell fate in zebrafish. Dev. Cell8, 97–108 (2005) ArticleCAS Google Scholar
Parsons, M. J. et al. Notch-responsive cells initiate the secondary transition in larval zebrafish pancreas. Mech. Dev.126, 898–912 (2009) ArticleCAS Google Scholar
Covassin, L. D. et al. A genetic screen for vascular mutants in zebrafish reveals dynamic roles for Vegf/Plcg1 signaling during artery development. Dev. Biol.329, 212–226 (2009) ArticleCAS Google Scholar
Roman, B. L. et al. Disruption of acvrl1 increases endothelial cell number in zebrafish cranial vessels. Development129, 3009–3019 (2002) CASPubMed Google Scholar
Kwan, K. M. et al. The Tol2kit: a multisite gateway-based construction kit for Tol2 transposon transgenesis constructs. Dev. Dyn.236, 3088–3099 (2007) ArticleCAS Google Scholar