Ubiquitin-dependent DNA damage bypass is separable from genome replication (original) (raw)
References
Lawrence, C. The RAD6 DNA repair pathway in Saccharomyces cerevisiae: what does it do, and how does it do it? Bioessays16, 253–258 (1994) ArticleCAS Google Scholar
Hoege, C., Pfander, B., Moldovan, G. L., Pyrowolakis, G. & Jentsch, S. _RAD6_-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature419, 135–141 (2002) ArticleADSCAS Google Scholar
Kannouche, P. L., Wing, J. & Lehmann, A. R. Interaction of human DNA polymerase η with monoubiquitinated PCNA: a possible mechanism for the polymerase switch in response to DNA damage. Mol. Cell14, 491–500 (2004) ArticleCAS Google Scholar
Stelter, P. & Ulrich, H. D. Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. Nature425, 188–191 (2003) ArticleADSCAS Google Scholar
Watanabe, K. et al. Rad18 guides pol η to replication stalling sites through physical interaction and PCNA monoubiquitination. EMBO J.23, 3886–3896 (2004) ArticleCAS Google Scholar
Zhang, H. & Lawrence, C. W. The error-free component of the RAD6/RAD18 DNA damage tolerance pathway of budding yeast employs sister-strand recombination. Proc. Natl Acad. Sci. USA102, 15954–15959 (2005) ArticleADSCAS Google Scholar
di Caprio, L. & Cox, B. S. DNA synthesis in UV-irradiated yeast. Mutat. Res.82, 69–85 (1981) ArticleCAS Google Scholar
Lehmann, A. R. Postreplication repair of DNA in ultraviolet-irradiated mammalian cells. J. Mol. Biol.66, 319–337 (1972) ArticleCAS Google Scholar
Prakash, L. Characterization of postreplication repair in Saccharomyces cerevisiae and effects of rad6, rad18, rev3 and rad52 mutations. Mol. Gen. Genet.184, 471–478 (1981) ArticleCAS Google Scholar
Lopes, M., Foiani, M. & Sogo, J. M. Multiple mechanisms control chromosome integrity after replication fork uncoupling and restart at irreparable UV lesions. Mol. Cell21, 15–27 (2006) ArticleCAS Google Scholar
Edmunds, C. E., Simpson, L. J. & Sale, J. E. PCNA ubiquitination and REV1 define temporally distinct mechanisms for controlling translesion synthesis in the avian cell line DT40. Mol. Cell30, 519–529 (2008) ArticleCAS Google Scholar
Davies, A. A., Huttner, D., Daigaku, Y., Chen, S. & Ulrich, H. D. Activation of ubiquitin-dependent DNA damage bypass is mediated by Replication Protein A. Mol. Cell29, 625–636 (2008) ArticleCAS Google Scholar
Janke, C. et al. A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast21, 947–962 (2004) ArticleCAS Google Scholar
Belli, G., Gari, E., Piedrafita, L., Aldea, M. & Herrero, E. An activator/repressor dual system allows tight tetracycline-regulated gene expression in budding yeast. Nucleic Acids Res.26, 942–947 (1998) ArticleCAS Google Scholar
Waters, L. S. & Walker, G. C. The critical mutagenic translesion DNA polymerase Rev1 is highly expressed during G(2)/M phase rather than S phase. Proc. Natl Acad. Sci. USA103, 8971–8976 (2006) ArticleADSCAS Google Scholar
Garg, P. & Burgers, P. M. Ubiquitinated proliferating cell nuclear antigen activates translesion DNA polymerases η and REV1. Proc. Natl Acad. Sci. USA102, 18361–18366 (2005) ArticleADSCAS Google Scholar
Haracska, L., Unk, I., Prakash, L. & Prakash, S. Ubiquitylation of yeast proliferating cell nuclear antigen and its implications for translesion DNA synthesis. Proc. Natl Acad. Sci. USA103, 6477–6482 (2006) ArticleADSCAS Google Scholar
Viggiani, C. J. & Aparicio, O. M. New vectors for simplified construction of BrdU-incorporating strains of Saccharomyces cerevisiae . Yeast23, 1045–1051 (2006) ArticleCAS Google Scholar
Parker, J. L., Bielen, A. B., Dikic, I. & Ulrich, H. D. Contributions of ubiquitin- and PCNA-binding domains to the activity of Polymerase η in Saccharomyces cerevisiae . Nucleic Acids Res.35, 881–889 (2007) ArticleCAS Google Scholar
MacAlpine, D. M. & Bell, S. P. A genomic view of eukaryotic DNA replication. Chromosome Res.13, 309–326 (2005) ArticleCAS Google Scholar
Hishida, T., Kubota, Y., Carr, A. M. & Iwasaki, H. RAD6–RAD18–RAD5-pathway-dependent tolerance to chronic low-dose ultraviolet light. Nature457, 612–615 (2009) ArticleADSCAS Google Scholar
Resnick, M. A. & Setlow, J. K. Repair of pyrimidine dimer damage induced in yeast by ultraviolet light. J. Bacteriol.109, 979–986 (1972) CASPubMedPubMed Central Google Scholar
Unrau, P., Wheatcroft, R., Cox, B. & Olive, T. The formation of pyrimidine dimers in the DNA of fungi and bacteria. Biochim. Biophys. Acta312, 626–632 (1973) ArticleCAS Google Scholar
Prakash, S., Johnson, R. E. & Prakash, L. Eukaryotic translesion synthesis DNA polymerases: specificity of structure and function. Annu. Rev. Biochem.74, 317–353 (2004) Article Google Scholar
Bresson, A. & Fuchs, R. P. P. Lesion bypass in yeast cells: Polη participates in a multi-DNA polymerase process. EMBO J.21, 3881–3887 (2002) ArticleCAS Google Scholar
Johnson, R. E., Washington, M. T., Haracska, L., Prakash, S. & Prakash, L. Eukaryotic polymerases ι and ζ act sequentially to bypass DNA lesions. Nature406, 1015–1019 (2000) ArticleADSCAS Google Scholar
Shachar, S. et al. Two-polymerase mechanisms dictate error-free and error-prone translesion DNA synthesis in mammals. EMBO J.28, 383–393 (2009) ArticleCAS Google Scholar
Papouli, E. et al. Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p. Mol. Cell19, 123–133 (2005) ArticleCAS Google Scholar
Liang, C. & Stillman, B. Persistent initiation of DNA replication and chromatin-bound MCM proteins during the cell cycle in cdc6 mutants. Genes Dev.11, 3375–3386 (1997) ArticleCAS Google Scholar
Jackson, D. A. & Pombo, A. Replicon clusters are stable units of chromosome structure: evidence that nuclear organization contributes to the efficient activation and propagation of S phase in human cells. J. Cell Biol.140, 1285–1295 (1998) ArticleCAS Google Scholar