Ubiquitin-dependent DNA damage bypass is separable from genome replication (original) (raw)

References

  1. Lawrence, C. The RAD6 DNA repair pathway in Saccharomyces cerevisiae: what does it do, and how does it do it? Bioessays 16, 253–258 (1994)
    Article CAS Google Scholar
  2. Hoege, C., Pfander, B., Moldovan, G. L., Pyrowolakis, G. & Jentsch, S. _RAD6_-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419, 135–141 (2002)
    Article ADS CAS Google Scholar
  3. Kannouche, P. L., Wing, J. & Lehmann, A. R. Interaction of human DNA polymerase η with monoubiquitinated PCNA: a possible mechanism for the polymerase switch in response to DNA damage. Mol. Cell 14, 491–500 (2004)
    Article CAS Google Scholar
  4. Stelter, P. & Ulrich, H. D. Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. Nature 425, 188–191 (2003)
    Article ADS CAS Google Scholar
  5. Watanabe, K. et al. Rad18 guides pol η to replication stalling sites through physical interaction and PCNA monoubiquitination. EMBO J. 23, 3886–3896 (2004)
    Article CAS Google Scholar
  6. Zhang, H. & Lawrence, C. W. The error-free component of the RAD6/RAD18 DNA damage tolerance pathway of budding yeast employs sister-strand recombination. Proc. Natl Acad. Sci. USA 102, 15954–15959 (2005)
    Article ADS CAS Google Scholar
  7. di Caprio, L. & Cox, B. S. DNA synthesis in UV-irradiated yeast. Mutat. Res. 82, 69–85 (1981)
    Article CAS Google Scholar
  8. Lehmann, A. R. Postreplication repair of DNA in ultraviolet-irradiated mammalian cells. J. Mol. Biol. 66, 319–337 (1972)
    Article CAS Google Scholar
  9. Prakash, L. Characterization of postreplication repair in Saccharomyces cerevisiae and effects of rad6, rad18, rev3 and rad52 mutations. Mol. Gen. Genet. 184, 471–478 (1981)
    Article CAS Google Scholar
  10. Lopes, M., Foiani, M. & Sogo, J. M. Multiple mechanisms control chromosome integrity after replication fork uncoupling and restart at irreparable UV lesions. Mol. Cell 21, 15–27 (2006)
    Article CAS Google Scholar
  11. Edmunds, C. E., Simpson, L. J. & Sale, J. E. PCNA ubiquitination and REV1 define temporally distinct mechanisms for controlling translesion synthesis in the avian cell line DT40. Mol. Cell 30, 519–529 (2008)
    Article CAS Google Scholar
  12. Davies, A. A., Huttner, D., Daigaku, Y., Chen, S. & Ulrich, H. D. Activation of ubiquitin-dependent DNA damage bypass is mediated by Replication Protein A. Mol. Cell 29, 625–636 (2008)
    Article CAS Google Scholar
  13. Janke, C. et al. A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21, 947–962 (2004)
    Article CAS Google Scholar
  14. Belli, G., Gari, E., Piedrafita, L., Aldea, M. & Herrero, E. An activator/repressor dual system allows tight tetracycline-regulated gene expression in budding yeast. Nucleic Acids Res. 26, 942–947 (1998)
    Article CAS Google Scholar
  15. Waters, L. S. & Walker, G. C. The critical mutagenic translesion DNA polymerase Rev1 is highly expressed during G(2)/M phase rather than S phase. Proc. Natl Acad. Sci. USA 103, 8971–8976 (2006)
    Article ADS CAS Google Scholar
  16. Garg, P. & Burgers, P. M. Ubiquitinated proliferating cell nuclear antigen activates translesion DNA polymerases η and REV1. Proc. Natl Acad. Sci. USA 102, 18361–18366 (2005)
    Article ADS CAS Google Scholar
  17. Haracska, L., Unk, I., Prakash, L. & Prakash, S. Ubiquitylation of yeast proliferating cell nuclear antigen and its implications for translesion DNA synthesis. Proc. Natl Acad. Sci. USA 103, 6477–6482 (2006)
    Article ADS CAS Google Scholar
  18. Viggiani, C. J. & Aparicio, O. M. New vectors for simplified construction of BrdU-incorporating strains of Saccharomyces cerevisiae . Yeast 23, 1045–1051 (2006)
    Article CAS Google Scholar
  19. Parker, J. L., Bielen, A. B., Dikic, I. & Ulrich, H. D. Contributions of ubiquitin- and PCNA-binding domains to the activity of Polymerase η in Saccharomyces cerevisiae . Nucleic Acids Res. 35, 881–889 (2007)
    Article CAS Google Scholar
  20. MacAlpine, D. M. & Bell, S. P. A genomic view of eukaryotic DNA replication. Chromosome Res. 13, 309–326 (2005)
    Article CAS Google Scholar
  21. Hishida, T., Kubota, Y., Carr, A. M. & Iwasaki, H. RAD6–RAD18–RAD5-pathway-dependent tolerance to chronic low-dose ultraviolet light. Nature 457, 612–615 (2009)
    Article ADS CAS Google Scholar
  22. Resnick, M. A. & Setlow, J. K. Repair of pyrimidine dimer damage induced in yeast by ultraviolet light. J. Bacteriol. 109, 979–986 (1972)
    CAS PubMed PubMed Central Google Scholar
  23. Unrau, P., Wheatcroft, R., Cox, B. & Olive, T. The formation of pyrimidine dimers in the DNA of fungi and bacteria. Biochim. Biophys. Acta 312, 626–632 (1973)
    Article CAS Google Scholar
  24. Prakash, S., Johnson, R. E. & Prakash, L. Eukaryotic translesion synthesis DNA polymerases: specificity of structure and function. Annu. Rev. Biochem. 74, 317–353 (2004)
    Article Google Scholar
  25. Bresson, A. & Fuchs, R. P. P. Lesion bypass in yeast cells: Polη participates in a multi-DNA polymerase process. EMBO J. 21, 3881–3887 (2002)
    Article CAS Google Scholar
  26. Johnson, R. E., Washington, M. T., Haracska, L., Prakash, S. & Prakash, L. Eukaryotic polymerases ι and ζ act sequentially to bypass DNA lesions. Nature 406, 1015–1019 (2000)
    Article ADS CAS Google Scholar
  27. Shachar, S. et al. Two-polymerase mechanisms dictate error-free and error-prone translesion DNA synthesis in mammals. EMBO J. 28, 383–393 (2009)
    Article CAS Google Scholar
  28. Papouli, E. et al. Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p. Mol. Cell 19, 123–133 (2005)
    Article CAS Google Scholar
  29. Liang, C. & Stillman, B. Persistent initiation of DNA replication and chromatin-bound MCM proteins during the cell cycle in cdc6 mutants. Genes Dev. 11, 3375–3386 (1997)
    Article CAS Google Scholar
  30. Jackson, D. A. & Pombo, A. Replicon clusters are stable units of chromosome structure: evidence that nuclear organization contributes to the efficient activation and propagation of S phase in human cells. J. Cell Biol. 140, 1285–1295 (1998)
    Article CAS Google Scholar

Download references