Convergent evolution of chicken Z and human X chromosomes by expansion and gene acquisition (original) (raw)

Nature volume 466, pages 612–616 (2010)Cite this article

Subjects

Abstract

In birds, as in mammals, one pair of chromosomes differs between the sexes. In birds, males are ZZ and females ZW. In mammals, males are XY and females XX. Like the mammalian XY pair, the avian ZW pair is believed to have evolved from autosomes, with most change occurring in the chromosomes found in only one sex—the W and Y chromosomes1,2,3,4,5. By contrast, the sex chromosomes found in both sexes—the Z and X chromosomes—are assumed to have diverged little from their autosomal progenitors2. Here we report findings that challenge this assumption for both the chicken Z chromosome and the human X chromosome. The chicken Z chromosome, which we sequenced essentially to completion, is less gene-dense than chicken autosomes but contains a massive tandem array containing hundreds of duplicated genes expressed in testes. A comprehensive comparison of the chicken Z chromosome with the finished sequence of the human X chromosome demonstrates that each evolved independently from different portions of the ancestral genome. Despite this independence, the chicken Z and human X chromosomes share features that distinguish them from autosomes: the acquisition and amplification of testis-expressed genes, and a low gene density resulting from an expansion of intergenic regions. These features were not present on the autosomes from which the Z and X chromosomes originated but were instead acquired during the evolution of Z and X as sex chromosomes. We conclude that the avian Z and mammalian X chromosomes followed convergent evolutionary trajectories, despite their evolving with opposite (female versus male) systems of heterogamety. More broadly, in birds and mammals, sex chromosome evolution involved not only gene loss in sex-specific chromosomes, but also marked expansion and gene acquisition in sex chromosomes common to males and females.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

Accession codes

Data deposits

Predicted Z-amplicon transcript sequences and the complete assembled sequence of the Z chromosome are available at http://jura.wi.mit.edu/page/papers/Bellott_et_al_2010/ (see Supplementary Table 5 for GenBank accession numbers).

References

  1. Muller, H. J. A gene for the fourth chromosome of Drosophila . J. Exp. Zool. 17, 325–336 (1914)
    Article Google Scholar
  2. Ohno, S. Sex Chromosomes and Sex-Linked Genes (Springer, 1967)
    Book Google Scholar
  3. Lahn, B. T. & Page, D. C. Four evolutionary strata on the human X chromosome. Science 286, 964–967 (1999)
    Article CAS Google Scholar
  4. Skaletsky, H. et al. The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature 423, 825–837 (2003)
    Article ADS CAS Google Scholar
  5. Ross, M. T. et al. The DNA sequence of the human X chromosome. Nature 434, 325–337 (2005)
    Article ADS CAS Google Scholar
  6. Nanda, I. et al. 300 million years of conserved synteny between chicken Z and human chromosome 9. Nature Genet. 21, 258–259 (1999)
    Article CAS Google Scholar
  7. Nanda, I., Haaf, T., Schartl, M., Schmid, M. & Burt, D. W. Comparative mapping of Z-orthologous genes in vertebrates: implications for the evolution of avian sex chromosomes. Cytogenet. Genome Res. 99, 178–184 (2002)
    Article CAS Google Scholar
  8. International Chicken Genome Sequencing Consortium Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432, 695–716 (2004)
    Article Google Scholar
  9. Grützner, F. et al. In the platypus a meiotic chain of ten sex chromosomes shares genes with the bird Z and mammal X chromosomes. Nature 432, 913–917 (2004)
    Article ADS Google Scholar
  10. Rens, W. et al. Resolution and evolution of the duck-billed platypus karyotype with an X1Y1X2Y2X3Y3X4Y4X5Y5 male sex chromosome constitution. Proc. Natl Acad. Sci. USA 101, 16257–16261 (2004)
    Article ADS CAS Google Scholar
  11. Ezaz, T., Stiglec, R., Veyrunes, F. & Marshall Graves, J. A. Relationships between vertebrate ZW and XY sex chromosome systems. Curr. Biol. 16, R736–R743 (2006)
    Article CAS Google Scholar
  12. Smith, J. J. & Voss, S. R. Bird and mammal sex-chromosome orthologs map to the same autosomal region in a salamander (Ambystoma). Genetics 177, 607–613 (2007)
    Article CAS Google Scholar
  13. Hori, T. et al. Characterization of DNA sequences constituting the terminal heterochromatin of the chicken Z chromosome. Chromosome Res. 4, 411–426 (1996)
    Article CAS Google Scholar
  14. Kasahara, M. et al. The medaka draft genome and insights into vertebrate genome evolution. Nature 447, 714–719 (2007)
    Article ADS CAS Google Scholar
  15. Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001)
    Article ADS CAS Google Scholar
  16. Scanlan, M. J., Simpson, A. J. & Old, L. J. The cancer/testis genes: review, standardization, and commentary. Cancer Immun. 4, 1 (2004)
    PubMed Google Scholar
  17. Wheeler, D. L. et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 33, D39–D45 (2005)
    Article ADS CAS Google Scholar
  18. Saifl, G. M. & Chandra, H. S. An apparent excess of sex- and reproduction-related genes on the human X chromosome. Proc. R. Soc. Lond. B 266, 203–209 (1999)
    Article Google Scholar
  19. Wichman, H. A., Bussche, R. A., Hamilton, M. J. & Baker, R. J. Transposable elements and the evolution of genome organization in mammals. Genetica 86, 287–293 (1992)
    Article CAS Google Scholar
  20. Wyckoff, G. J., Wang, W. & Wu, C. I. Rapid evolution of male reproductive genes in the descent of man. Nature 403, 304–309 (2000)
    Article ADS CAS Google Scholar
  21. Swanson, W. J. & Vacquier, V. D. The rapid evolution of reproductive proteins. Nature Rev. Genet. 3, 137–144 (2002)
    Article CAS Google Scholar
  22. Rice, W. R. Sex chromosomes and the evolution of sexual dimorphism. Evolution 38, 735–742 (1984)
    Article Google Scholar
  23. Filatov, D. A. Evolutionary history of Silene latifolia sex chromosomes revealed by genetic mapping of four genes. Genetics 170, 975 (2005)
    Article CAS Google Scholar
  24. Handley, L. J. L., Ceplitis, H. & Ellegren, H. Evolutionary strata on the chicken Z chromosome: implications for sex chromosome evolution. Genetics 167, 367 (2004)
    Article Google Scholar
  25. Nicolas, M. et al. A gradual process of recombination restriction in the evolutionary history of the sex chromosomes in dioecious plants. PLoS Biol. 3, e4 (2005)
    Article Google Scholar
  26. Wallis, J. W. et al. A physical map of the chicken genome. Nature 432, 761–764 (2004)
    Article ADS CAS Google Scholar
  27. Morisson, M. et al. ChickRH6: a chicken whole-genome radiation hybrid panel. Genet. Sel. Evol. 34, 521–533 (2002)
    Article CAS Google Scholar
  28. Saxena, R. et al. Four DAZ genes in two clusters found in the AZFc region of the human Y chromosome. Genomics 67, 256–267 (2000)
    Article CAS Google Scholar
  29. Kent, W. J. BLAT–the BLAST-like alignment tool. Genome Res. 12, 656–664 (2002)
    Article CAS Google Scholar
  30. Hubbard, T. J. et al. Ensembl 2009. Nucleic Acids Res. 37, D690–D697 (2009)
    Article CAS Google Scholar
  31. Korf, I., Flicek, P., Duan, D. & Brent, M. R. Integrating genomic homology into gene structure prediction. Bioinformatics 17 (suppl. 1). S140–S148 (2001)
    Article Google Scholar
  32. Flicek, P., Keibler, E., Hu, P., Korf, I. & Brent, M. R. Leveraging the mouse genome for gene prediction in human: from whole-genome shotgun reads to a global synteny map. Genome Res. 13, 46–54 (2003)
    Article CAS Google Scholar
  33. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990)
    Article CAS Google Scholar
  34. Lowe, T. M. & Eddy, S. R. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25, 955–964 (1997)
    Article CAS Google Scholar
  35. Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J. & Sayers, E. W. GenBank. Nucleic Acids Res. 37, D26–D31 (2009)
    Article CAS Google Scholar
  36. Griffiths-Jones, S., Saini, H. K., van Dongen, S. & Enright, A. J. miRBase: tools for microRNA genomics. Nucleic Acids Res. 36, D154–D158 (2008)
    Article CAS Google Scholar
  37. Smit, A. F. A., Hubley, R. & Green, P. RepeatMasker Open-3.0. 〈http://www.repeatmasker.org〉 (2007)
  38. Kuroda-Kawaguchi, T. et al. The AZFc region of the Y chromosome features massive palindromes and uniform recurrent deletions in infertile men. Nature Genet. 29, 279–286 (2001)
    Article CAS Google Scholar
  39. Boardman, P. E. et al. A comprehensive collection of chicken cDNAs. Curr. Biol. 12, 1965–1969 (2002)
    Article Google Scholar

Download references

Acknowledgements

We thank E. Rapoport for technical assistance, S. Repping and S. van Daalen for experimental advice, and E. Anderson, T. Endo, M. Gill, A. Hochwagen, C. Hongay, Y. Hu, J. Hughes, J. Marszalek, J. Mueller and Y. Soh for comments on the manuscript. We thank the Broad Institute Genome Sequencing Platform and Genome Sequencing and Analysis Program, F. Di Palma and K. Lindblad-Toh for making the unpublished data for Gasterosteus aculeatus available. This work was supported by the National Institutes of Health and the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

  1. and Department of Biology, Howard Hughes Medical Institute, Whitehead Institute, Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA,
    Daniel W. Bellott, Helen Skaletsky, Tatyana Pyntikova, Laura G. Brown, Steve Rozen & David C. Page
  2. The Genome Center, Washington University School of Medicine, 4444 Forest Park Boulevard, St Louis, 63108, Missouri, USA
    Elaine R. Mardis, Tina Graves, Colin Kremitzki, Wesley C. Warren & Richard K. Wilson

Authors

  1. Daniel W. Bellott
  2. Helen Skaletsky
  3. Tatyana Pyntikova
  4. Elaine R. Mardis
  5. Tina Graves
  6. Colin Kremitzki
  7. Laura G. Brown
  8. Steve Rozen
  9. Wesley C. Warren
  10. Richard K. Wilson
  11. David C. Page

Contributions

D.W.B., H.S., W.C.W., S.R., R.K.W. and D.C.P. planned the project. D.W.B. and L.G.B. performed BAC mapping. D.W.B. performed RT–PCR analysis. T.G. and C.K. were responsible for finished BAC sequencing. D.W.B. and H.S. performed comparative sequence analyses. T.P. performed FISH analysis. E.R.M. performed 454 sequencing. D.W.B. and D.C.P. wrote the paper.

Corresponding author

Correspondence toDavid C. Page.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-12 with legends (please note that Supplementary Figure 1 spans 24 pages), Supplementary Tables 1-5 and Supplementary Notes 1, which gives additional information about Supplementary Figure 12. (PDF 25983 kb)

PowerPoint slides

Rights and permissions

About this article

Cite this article

Bellott, D., Skaletsky, H., Pyntikova, T. et al. Convergent evolution of chicken Z and human X chromosomes by expansion and gene acquisition.Nature 466, 612–616 (2010). https://doi.org/10.1038/nature09172

Download citation

This article is cited by

Comments

Commenting on this article is now closed.

  1. Robert Stonjek 15 July 2010, 00:44
    I hope we are not forgetting that monotremes have some 11 sex chromosomes including some similar to the X, Y, W and Z sex chromosomes as found in birds and mammals?

Editorial Summary

Dynamic sex chromosomes

Birds and mammals have distinct sex chromosomes. In birds, males have a pair of Z chromosomes and females a Z and a W. In mammals, males are XY and females XX. It has long been assumed that sex-chromosome evolution has involved dramatic modification of the sex-specific (W and Y) chromosomes but only modest changes to the Z and X chromosomes shared by the sexes. Not so, according to a new study reporting the sequence of the chicken Z chromosome and comparing it with the finished sequence of human X. The Z and X chromosomes have changed dramatically from the autosomal (non-sex) chromosomes that gave rise to them. And they seem to have followed convergent evolutionary trajectories, including the acquisition and amplification of testis-expressed gene families, despite having arisen independently from different portions of the ancestral genome.