MEC-17 is an α-tubulin acetyltransferase (original) (raw)
Nogales, E., Whittaker, M., Milligan, R. A. & Downing, K. H. High-resolution model of the microtubule. Cell96, 79–88 (1999) ArticleCASPubMed Google Scholar
L'Hernault, S. W. & Rosenbaum, J. L. Chlamydomonas α-tubulin is posttranslationally modified in the flagella during flagellar assembly. J. Cell Biol.97, 258–263 (1983) ArticleCASPubMed Google Scholar
Steczkiewicz, K., Kinch, L., Grishin, N. V., Rychlewski, L. & Ginalski, K. Eukaryotic domain of unknown function DUF738 belongs to Gcn5-related N-acetyltransferase superfamily. Cell Cycle5, 2927–2930 (2006) ArticleCASPubMed Google Scholar
Chalfie, M. & Au, M. Genetic control of differentiation of the Caenorhabditis elegans touch receptor neurons. Science243, 1027–1033 (1989) ArticleADSCASPubMed Google Scholar
Zhang, Y. et al. Identification of genes expressed in C.elegans touch receptor neurons. Nature418, 331–335 (2002) ArticleADSCASPubMed Google Scholar
Gaertig, J. et al. Acetylation of lysine 40 in α-tubulin is not essential in Tetrahymena thermophila . J. Cell Biol.129, 1301–1310 (1995) ArticleCASPubMed Google Scholar
Kozminski, K. G., Diener, D. R. & Rosenbaum, J. L. High level expression of nonacetylatable α-tubulin in Chlamydomonas reinhardtii . Cell Motil. Cytoskeleton25, 158–170 (1993) ArticleCASPubMed Google Scholar
Witte, H., Neukirchen, D. & Bradke, F. Microtubule stabilization specifies initial neuronal polarization. J. Cell Biol.180, 619–632 (2008) ArticleCASPubMedPubMed Central Google Scholar
Dompierre, J. P. et al. Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington’s disease by increasing tubulin acetylation. J. Neurosci.27, 3571–3583 (2007) ArticleCASPubMedPubMed Central Google Scholar
Creppe, C. et al. Elongator controls the migration and differentiation of cortical neurons through acetylation of α-tubulin. Cell136, 551–564 (2009) ArticleCASPubMed Google Scholar
Nakata, T. & Hirokawa, N. Microtubules provide directional cues for polarized axonal transport through interaction with kinesin motor head. J. Cell Biol.162, 1045–1055 (2003) ArticleCASPubMedPubMed Central Google Scholar
Reed, N. A. et al. Microtubule acetylation promotes kinesin-1 binding and transport. Curr. Biol.16, 2166–2172 (2006) ArticleCASPubMed Google Scholar
Konishi, Y. & Setou, M. Tubulin tyrosination navigates the kinesin-1 motor domain to axons. Nature Neurosci.12, 559–567 (2009) ArticleCASPubMed Google Scholar
North, B. J., Marshall, B. L., Borra, M. T., Denu, J. M. & Verdin, E. The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol. Cell11, 437–444 (2003) ArticleCASPubMed Google Scholar
Maruta, H., Greer, K. & Rosenbaum, J. L. The acetylation of α-tubulin and its relationship to the assembly and disassembly of microtubules. J. Cell Biol.103, 571–579 (1986) ArticleCASPubMed Google Scholar
Fukushige, T. et al. MEC-12, an α-tubulin required for touch sensitivity in C.elegans . J. Cell Sci.112, 395–403 (1999) CASPubMed Google Scholar
LeDizet, M. & Piperno, G. Detection of acetylated α-tubulin by specific antibodies. Methods Enzymol.196, 264–274 (1991) ArticleCASPubMed Google Scholar
Barlow, S. B., Gonzalez-Garay, M. L. & Cabral, F. Paclitaxel-dependent mutants have severely reduced microtubule assembly and reduced tubulin synthesis. J. Cell Sci.115, 3469–3478 (2002) CASPubMed Google Scholar
Bounoutas, A., O'Hagan, R. & Chalfie, M. The multipurpose 15-protofilament microtubules in C.elegans have specific roles in mechanosensation. Curr. Biol.19, 1362–1367 (2009) ArticleCASPubMedPubMed Central Google Scholar
Frøkjaer-Jensen, C. et al. Single-copy insertion of transgenes in Caenorhabditis elegans . Nature Genet.40, 1375–1383 (2008) ArticlePubMed Google Scholar
Sun, Z. et al. A genetic screen in zebrafish identifies cilia genes as a principal cause of cystic kidney. Development131, 4085–4093 (2004) ArticleCASPubMed Google Scholar
Wilson, S. W. & Easter, S. S., Jr Stereotyped pathway selection by growth cones of early epiphysial neurons in the embryonic zebrafish. Development112, 723–746 (1991) CASPubMed Google Scholar
Fox, M. A. & Sanes, J. R. Synaptotagmin I and II are present in distinct subsets of central synapses. J. Comp. Neurol.503, 280–296 (2007) ArticleCASPubMed Google Scholar
Solinger, J. A. et al. The Caenorhabditis elegans Elongator complex regulates neuronal α-tubulin acetylation. PLoS Genet.6, e1000820 (2010) ArticlePubMedPubMed Central Google Scholar
Chen, C., Tuck, S. & Bystrom, A. S. Defects in tRNA modification associated with neurological and developmental dysfunctions in Caenorhabditis elegans elongator mutants. PLoS Genet.5, e1000561 (2009) ArticlePubMedPubMed Central Google Scholar
Ohkawa, N. et al. N-acetyltransferase ARD1–NAT1 regulates neuronal dendritic development. Genes Cells13, 1171–1183 (2008) CASPubMed Google Scholar
Shen, Q. et al. NAT10, a nucleolar protein, localizes to the midbody and regulates cytokinesis and acetylation of microtubules. Exp. Cell Res.315, 1653–1667 (2009) ArticleCASPubMed Google Scholar
Mochizuki, K. High efficiency transformation of Tetrahymena using a codon-optimized neomycin resistance gene. Gene425, 79–83 (2008) ArticleCASPubMed Google Scholar
Cassidy-Hanley, D. et al. Germline and somatic transformation of mating Tetrahymena thermophila by particle bombardment. Genetics146, 135–147 (1997) CASPubMedPubMed Central Google Scholar
Hai, B. & Gorovsky, M. A. Germ-line knockout heterokaryons of an essential α-tubulin gene enable high-frequency gene replacement and a test of gene transfer from somatic to germ-line nuclei in Tetrahymena thermophila . Proc. Natl Acad. Sci. USA94, 1310–1315 (1997) ArticleADSCASPubMedPubMed Central Google Scholar
Wloga, D. et al. Members of the Nima-related kinase family promote disassembly of cilia by multiple mechanisms. Mol. Biol. Cell17, 2799–2810 (2006) ArticleCASPubMedPubMed Central Google Scholar
Gaertig, J., Gao, Y., Tishgarten, T., Clark, T. G. & Dickerson, H. W. Surface display of a parasite antigen in the ciliate Tetrahymena thermophila . Nature Biotechnol.17, 462–465 (1999) ArticleCAS Google Scholar
Piperno, G. & Fuller, M. T. Monoclonal antibodies specific for an acetylated form of α-tubulin recognize the antigen in cilia and flagella from a variety of organisms. J. Cell Biol.101, 2085–2094 (1985) ArticleCASPubMed Google Scholar
Jerka-Dziadosz, M., Strzyewska-Jowko, I., Wojsa-Lugowska, U., Krawczynska, W. & Krzywicka, A. The dynamics of filamentous structures in the apical band, oral crescent, fission line and the postoral meridional filament in Tetrahymena thermophila revealed by the monoclonal antibody 12G9. Protist152, 53–67 (2001) ArticleCASPubMed Google Scholar
Janke, C. et al. Tubulin polyglutamylase enzymes are members of the TTL domain protein family. Science308, 1758–1762 (2005) ArticleADSCASPubMed Google Scholar
Wloga, D. et al. TTLL3 is a tubulin glycine ligase that regulates the assembly of cilia. Dev. Cell16, 867–876 (2009) ArticleCASPubMed Google Scholar
Miller, D. M. & Shakes, D. C. Immunofluorescence microscopy. Methods Cell Biol.48, 365–394 (1995) ArticleCASPubMed Google Scholar
Wloga, D. et al. Glutamylation on α-tubulin is not essential but affects the assembly and functions of a subset of microtubules in Tetrahymena . Eukaryot. Cell7, 1362–1372 (2008) ArticleCASPubMedPubMed Central Google Scholar
Yakovich, A. J., Ragone, F. L., Alfonzo, J. D., Sackett, D. L. & Werbovetz, K. A. Leishmania tarentolae: purification and characterization of tubulin and its suitability for antileishmanial drug screening. Exp. Parasitol.114, 289–296 (2006) ArticleCASPubMedPubMed Central Google Scholar
Kuninger, D., Lundblad, J., Semirale, A. & Rotwein, P. A non-isotopic in vitro assay for histone acetylation. J. Biotechnol.131, 253–260 (2007) ArticleCASPubMedPubMed Central Google Scholar