Pannexin 1 channels mediate ‘find-me’ signal release and membrane permeability during apoptosis (original) (raw)

References

  1. Lauber, K., Blumanthal, S. C., Waibel, M. & Wesselborg, S. Clearance of apoptotic cells: getting rid of the corpses. Mol. Cell 14, 277–287 (2004)
    Article CAS Google Scholar
  2. Elliott, M. R. et al. Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature 461, 282–286 (2009)
    Article ADS CAS Google Scholar
  3. Idziorek, T., Estaquier, J., De Bels, F. & Ameisen, J. C. YOPRO-1 permits cytofluorometric analysis of programmed cell death (apoptosis) without interfering with cell viability. J. Immunol. Methods 185, 249–258 (1995)
    Article CAS Google Scholar
  4. Ghiringhelli, F. et al. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1β-dependent adaptive immunity against tumors. Nature Med. 15, 1170–1178 (2009)
    Article CAS Google Scholar
  5. Fujiwara, T., Oda, K., Yokota, S., Takatsuki, A. & Ikehara, Y. Brefeldin A causes disassembly of the Golgi complex and accumulation of secretory proteins in the endoplasmic reticulum. J. Biol. Chem. 263, 18545–18552 (1988)
    CAS PubMed Google Scholar
  6. Sebbagh, M. et al. Caspase-3-mediated cleavage of ROCK I induces MLC phosphorylation and apoptotic membrane blebbing. Nature Cell Biol. 3, 346–352 (2001)
    Article CAS Google Scholar
  7. Coleman, M. L. et al. Membrane blebbing during apoptosis results from caspase-mediated activation of ROCK I. Nature Cell Biol. 3, 339–345 (2001)
    Article CAS Google Scholar
  8. Harris, A. L. Connexin channel permeability to cytoplasmic molecules. Prog. Biophys. Mol. Biol. 94, 120–143 (2007)
    Article CAS Google Scholar
  9. MacVicar, B. A. & Thompson, R. J. Non-junction functions of pannexin-1 channels. Trends Neurosci. 33, 93–102 (2010)
    Article CAS Google Scholar
  10. Scemes, E., Spray, D. C. & Meda, P. Connexins, pannexins, innexins: novel roles of “hemi-channels”. Pflugers Arch. 457, 1207–1226 (2009)
    Article CAS Google Scholar
  11. Ma, W., Hui, H., Pelegrin, P. & Surprenant, A. Pharmacological characterization of pannexin-1 currents expressed in mammalian cells. J. Pharmacol. Exp. Ther. 328, 409–418 (2009)
    Article CAS Google Scholar
  12. Denault, J. B. & Salvesen, G. S. Apoptotic caspase activation and activity. Methods Mol. Biol. 414, 191–220 (2008)
    CAS PubMed Google Scholar
  13. Silverman, W., Locovei, S. & Dahl, G. Probenecid, a gout remedy, inhibits pannexin 1 channels. Am. J. Physiol. Cell Physiol. 295, C761–C767 (2008)
    Article CAS Google Scholar
  14. Bruzzone, R., Barbe, M. T., Jakob, N. J. & Monyer, H. Pharmacological properties of homomeric and heteromeric pannexin hemichannels expressed in Xenopus oocytes. J. Neurochem. 92, 1033–1043 (2005)
    Article CAS Google Scholar
  15. Baranova, A. et al. The mammalian pannexin family is homologous to the invertebrate innexin gap junction proteins. Genomics 83, 706–716 (2004)
    Article CAS Google Scholar
  16. Söhl, G., Maxeiner, S. & Willecke, K. Expression and functions of neuronal gap junctions. Nature Rev. Neurosci. 6, 191–200 (2005)
    Article Google Scholar
  17. Locovei, S., Scemes, E., Qiu, F., Spray, D. C. & Dahl, G. Pannexin1 is part of the pore forming unit of the P2X7 receptor death complex. FEBS Lett. 581, 483–488 (2007)
    Article CAS Google Scholar
  18. Chen, X., Shu, S., Kennedy, D. P., Willcox, S. C. & Bayliss, D. A. Subunit-specific effects of isoflurane on neuronal Ih in HCN1 knockout mice. J. Neurophysiol. 101, 129–140 (2009)
    Article CAS Google Scholar
  19. Thompson, R. J. et al. Activation of pannexin-1 hemichannels augments aberrant bursting in the hippocampus. Science 322, 1555–1559 (2008)
    Article ADS CAS Google Scholar
  20. Spencer, S. L., Gaudet, S., Albeck, J. G., Burke, J. M. & Sorger, P. K. Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis. Nature 459, 428–432 (2009)
    Article ADS CAS Google Scholar
  21. Penuela, S. et al. Pannexin 1 and pannexin 3 are glycoproteins that exhibit many distinct characteristics from the connexin family of gap junction proteins. J. Cell Sci. 120, 3772–3783 (2007)
    Article CAS Google Scholar
  22. Pop, C. & Salvesen, G. S. Human caspases: activation, specificity, and regulation. J. Biol. Chem. 284, 21777–21781 (2009)
    Article CAS Google Scholar
  23. Wee, L. J., Tan, T. W. & Ranganathan, S. CASVM: web server for SVM-based prediction of caspase substrates cleavage sites. Bioinformatics 23, 3241–3243 (2007)
    Article CAS Google Scholar
  24. Ambrosi, C. et al. Pannexin1 and pannexin2 channels show quaternary similarities to connexons and different oligomerization numbers from each other. J. Biol. Chem. 285, 24420–24431 (2004)
    Article Google Scholar
  25. Burnstock, G. & Knight, G. E. Cellular distribution and functions of P2 receptor subtypes in different systems. Int. Rev. Cytol. 240, 31–304 (2004)
    Article CAS Google Scholar
  26. Praetorius, H. A. & Leipziger, J. ATP release from non-excitable cells. Purinergic Signal. 5, 433–446 (2009)
    Article CAS Google Scholar
  27. Johnson, C. E. & Kornbluth, S. Caspase cleavage is not for everyone. Cell 134, 720–721 (2008)
    Article CAS Google Scholar
  28. Timmer, J. C. & Salvesen, G. S. Caspase substrates. Cell Death Differ. 14, 66–72 (2007)
    Article CAS Google Scholar
  29. Lazarowski, E. R. & Harden, T. K. Quantitation of extracellular UTP using a sensitive enzymatic assay. Br. J. Pharmacol. 127, 1272–1278 (1999)
    Article CAS Google Scholar
  30. Penuela, S., Bhalla, R., Nag, K. & Laird, D. W. Glycosylation regulates pannexin intermixing and cellular localization. Mol. Biol. Cell 20, 4313–4323 (2009)
    Article CAS Google Scholar
  31. Ai, H. W., Shaner, N. C., Cheng, Z., Tsien, R. Y. & Campbell, R. E. Exploration of new chromophore structures leads to the identification of improved blue fluorescent proteins. Biochemistry 46, 5904–5910 (2007)
    Article CAS Google Scholar
  32. Kadl, A., Galkina, E. & Leitinger, N. Induction of CCR2-dependent macrophage accumulation by oxidized phospholipids in the air-pouch model of inflammation. Arthritis Rheum. 60, 1362–1371 (2009)
    Article Google Scholar
  33. el-Fouly, M. H., Trosko, J. E. & Chang, C. C. Scrape-loading and dye transfer. A rapid and simple technique to study gap junctional intercellular communication. Exp. Cell Res. 168, 422–430 (1987)
    Article CAS Google Scholar

Download references