Pannexin 1 channels mediate ‘find-me’ signal release and membrane permeability during apoptosis (original) (raw)
References
Lauber, K., Blumanthal, S. C., Waibel, M. & Wesselborg, S. Clearance of apoptotic cells: getting rid of the corpses. Mol. Cell14, 277–287 (2004) ArticleCAS Google Scholar
Elliott, M. R. et al. Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature461, 282–286 (2009) ArticleADSCAS Google Scholar
Idziorek, T., Estaquier, J., De Bels, F. & Ameisen, J. C. YOPRO-1 permits cytofluorometric analysis of programmed cell death (apoptosis) without interfering with cell viability. J. Immunol. Methods185, 249–258 (1995) ArticleCAS Google Scholar
Ghiringhelli, F. et al. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1β-dependent adaptive immunity against tumors. Nature Med.15, 1170–1178 (2009) ArticleCAS Google Scholar
Fujiwara, T., Oda, K., Yokota, S., Takatsuki, A. & Ikehara, Y. Brefeldin A causes disassembly of the Golgi complex and accumulation of secretory proteins in the endoplasmic reticulum. J. Biol. Chem.263, 18545–18552 (1988) CASPubMed Google Scholar
Sebbagh, M. et al. Caspase-3-mediated cleavage of ROCK I induces MLC phosphorylation and apoptotic membrane blebbing. Nature Cell Biol.3, 346–352 (2001) ArticleCAS Google Scholar
Coleman, M. L. et al. Membrane blebbing during apoptosis results from caspase-mediated activation of ROCK I. Nature Cell Biol.3, 339–345 (2001) ArticleCAS Google Scholar
Harris, A. L. Connexin channel permeability to cytoplasmic molecules. Prog. Biophys. Mol. Biol.94, 120–143 (2007) ArticleCAS Google Scholar
MacVicar, B. A. & Thompson, R. J. Non-junction functions of pannexin-1 channels. Trends Neurosci.33, 93–102 (2010) ArticleCAS Google Scholar
Scemes, E., Spray, D. C. & Meda, P. Connexins, pannexins, innexins: novel roles of “hemi-channels”. Pflugers Arch.457, 1207–1226 (2009) ArticleCAS Google Scholar
Ma, W., Hui, H., Pelegrin, P. & Surprenant, A. Pharmacological characterization of pannexin-1 currents expressed in mammalian cells. J. Pharmacol. Exp. Ther.328, 409–418 (2009) ArticleCAS Google Scholar
Denault, J. B. & Salvesen, G. S. Apoptotic caspase activation and activity. Methods Mol. Biol.414, 191–220 (2008) CASPubMed Google Scholar
Silverman, W., Locovei, S. & Dahl, G. Probenecid, a gout remedy, inhibits pannexin 1 channels. Am. J. Physiol. Cell Physiol.295, C761–C767 (2008) ArticleCAS Google Scholar
Bruzzone, R., Barbe, M. T., Jakob, N. J. & Monyer, H. Pharmacological properties of homomeric and heteromeric pannexin hemichannels expressed in Xenopus oocytes. J. Neurochem.92, 1033–1043 (2005) ArticleCAS Google Scholar
Baranova, A. et al. The mammalian pannexin family is homologous to the invertebrate innexin gap junction proteins. Genomics83, 706–716 (2004) ArticleCAS Google Scholar
Söhl, G., Maxeiner, S. & Willecke, K. Expression and functions of neuronal gap junctions. Nature Rev. Neurosci.6, 191–200 (2005) Article Google Scholar
Locovei, S., Scemes, E., Qiu, F., Spray, D. C. & Dahl, G. Pannexin1 is part of the pore forming unit of the P2X7 receptor death complex. FEBS Lett.581, 483–488 (2007) ArticleCAS Google Scholar
Chen, X., Shu, S., Kennedy, D. P., Willcox, S. C. & Bayliss, D. A. Subunit-specific effects of isoflurane on neuronal Ih in HCN1 knockout mice. J. Neurophysiol.101, 129–140 (2009) ArticleCAS Google Scholar
Thompson, R. J. et al. Activation of pannexin-1 hemichannels augments aberrant bursting in the hippocampus. Science322, 1555–1559 (2008) ArticleADSCAS Google Scholar
Spencer, S. L., Gaudet, S., Albeck, J. G., Burke, J. M. & Sorger, P. K. Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis. Nature459, 428–432 (2009) ArticleADSCAS Google Scholar
Penuela, S. et al. Pannexin 1 and pannexin 3 are glycoproteins that exhibit many distinct characteristics from the connexin family of gap junction proteins. J. Cell Sci.120, 3772–3783 (2007) ArticleCAS Google Scholar
Pop, C. & Salvesen, G. S. Human caspases: activation, specificity, and regulation. J. Biol. Chem.284, 21777–21781 (2009) ArticleCAS Google Scholar
Wee, L. J., Tan, T. W. & Ranganathan, S. CASVM: web server for SVM-based prediction of caspase substrates cleavage sites. Bioinformatics23, 3241–3243 (2007) ArticleCAS Google Scholar
Ambrosi, C. et al. Pannexin1 and pannexin2 channels show quaternary similarities to connexons and different oligomerization numbers from each other. J. Biol. Chem.285, 24420–24431 (2004) Article Google Scholar
Burnstock, G. & Knight, G. E. Cellular distribution and functions of P2 receptor subtypes in different systems. Int. Rev. Cytol.240, 31–304 (2004) ArticleCAS Google Scholar
Praetorius, H. A. & Leipziger, J. ATP release from non-excitable cells. Purinergic Signal.5, 433–446 (2009) ArticleCAS Google Scholar
Johnson, C. E. & Kornbluth, S. Caspase cleavage is not for everyone. Cell134, 720–721 (2008) ArticleCAS Google Scholar
Timmer, J. C. & Salvesen, G. S. Caspase substrates. Cell Death Differ.14, 66–72 (2007) ArticleCAS Google Scholar
Lazarowski, E. R. & Harden, T. K. Quantitation of extracellular UTP using a sensitive enzymatic assay. Br. J. Pharmacol.127, 1272–1278 (1999) ArticleCAS Google Scholar
Penuela, S., Bhalla, R., Nag, K. & Laird, D. W. Glycosylation regulates pannexin intermixing and cellular localization. Mol. Biol. Cell20, 4313–4323 (2009) ArticleCAS Google Scholar
Ai, H. W., Shaner, N. C., Cheng, Z., Tsien, R. Y. & Campbell, R. E. Exploration of new chromophore structures leads to the identification of improved blue fluorescent proteins. Biochemistry46, 5904–5910 (2007) ArticleCAS Google Scholar
Kadl, A., Galkina, E. & Leitinger, N. Induction of CCR2-dependent macrophage accumulation by oxidized phospholipids in the air-pouch model of inflammation. Arthritis Rheum.60, 1362–1371 (2009) Article Google Scholar
el-Fouly, M. H., Trosko, J. E. & Chang, C. C. Scrape-loading and dye transfer. A rapid and simple technique to study gap junctional intercellular communication. Exp. Cell Res.168, 422–430 (1987) ArticleCAS Google Scholar