Chronic high-fat diet in fathers programs β-cell dysfunction in female rat offspring (original) (raw)

References

  1. Wang, Y. & Lobstein, T. Worldwide trends in childhood overweight and obesity. Int. J. Pediatr. Obes. 1, 11–25 (2006)
    Article Google Scholar
  2. Pinhas-Hamiel, O. & Zeitler, P. The global spread of type 2 diabetes mellitus in children and adolescents. J. Pediatr. 146, 693–700 (2005)
    Article Google Scholar
  3. Whitaker, R. C., Wright, J. A., Pepe, M. S., Seidel, K. D. & Dietz, W. H. Predicting obesity in young adulthood from childhood and parental obesity. N. Engl. J. Med. 337, 869–873 (1997)
    Article CAS Google Scholar
  4. Morris, M. Early life influences on obesity risk: maternal overnutrition and programming of obesity. Expert Rev. Endocrinol. Metab. 4, 625–637 (2009)
    Article Google Scholar
  5. Tarquini, B., Tarquini, R., Perfetto, F., Cornelissen, G. & Halberg, F. Genetic and environmental influences on human cord blood leptin concentration. Pediatrics 103, 998–1006 (1999)
    Article CAS Google Scholar
  6. Power, C., Li, L., Manor, O. & Davey Smith, G. Combination of low birth weight and high adult body mass index: at what age is it established and what are its determinants? J. Epidemiol. Community Health 57, 969–973 (2003)
    Article CAS Google Scholar
  7. Bouchard, C. Childhood obesity: are genetic differences involved? Am. J. Clin. Nutr. 89, 1494S–1501S (2009)
    Article CAS Google Scholar
  8. Guo, Y. F. et al. Assessment of genetic linkage and parent-of-origin effects on obesity. J. Clin. Endocrinol. Metab. 91, 4001–4005 (2006)
    Article CAS Google Scholar
  9. Le Stunff, C., Fallin, D. & Bougneres, P. Paternal transmission of the very common class I INS VNTR alleles predisposes to childhood obesity. Nature Genet. 29, 96–99 (2001)
    Article CAS Google Scholar
  10. Gluckman, P. D. et al. Towards a new developmental synthesis: adaptive developmental plasticity and human disease. Lancet 373, 1654–1657 (2009)
    Article Google Scholar
  11. Li, L., Law, C., Lo Conte, R. & Power, C. Intergenerational influences on childhood body mass index: the effect of parental body mass index trajectories. Am. J. Clin. Nutr. 89, 551–557 (2009)
    Article CAS Google Scholar
  12. Dunn, G. A. & Bale, T. L. Maternal high-fat diet promotes body length increases and insulin insensitivity in second-generation mice. Endocrinology 150, 4999–5009 (2009)
    Article CAS Google Scholar
  13. Ghanayem, B. I., Bai, R., Kissling, G. E., Travlos, G. & Hoffler, U. Diet-induced obesity in male mice is associated with reduced fertility and potentiation of acrylamide-induced reproductive toxicity. Biol. Reprod. 82, 96–104 (2009)
    Article Google Scholar
  14. Kasturi, S. S., Tannir, J. & Brannigan, R. E. The metabolic syndrome and male infertility. J. Androl. 29, 251–259 (2008)
    Article CAS Google Scholar
  15. Figueroa-Colon, R., Arani, R. B., Goran, M. I. & Weinsier, R. L. Paternal body fat is a longitudinal predictor of changes in body fat in premenarcheal girls. Am. J. Clin. Nutr. 71, 829–834 (2000)
    Article CAS Google Scholar
  16. Leibel, N. I., Baumann, E. E., Kocherginsky, M. & Rosenfield, R. L. Relationship of adolescent polycystic ovary syndrome to parental metabolic syndrome. J. Clin. Endocrinol. Metab. 91, 1275–1283 (2006)
    Article CAS Google Scholar
  17. Jimenez-Chillaron, J. C. et al. Intergenerational transmission of glucose intolerance and obesity by in utero undernutrition in mice. Diabetes 58, 460–468 (2009)
    Article CAS Google Scholar
  18. Sone, H. & Kagawa, Y. Pancreatic β cell senescence contributes to the pathogenesis of type 2 diabetes in high-fat diet-induced diabetic mice. Diabetologia 48, 58–67 (2005)
    Article CAS Google Scholar
  19. Henquin, J. C., Nenquin, M., Ravier, M. A. & Szollosi, A. Shortcomings of current models of glucose-induced insulin secretion. Diabetes Obes. Metab. 11 (suppl. 4). 168–179 (2009)
    Article CAS Google Scholar
  20. Wang, Z. & Thurmond, D. C. Mechanisms of biphasic insulin-granule exocytosis—roles of the cytoskeleton, small GTPases and SNARE proteins. J. Cell Sci. 122, 893–903 (2009)
    Article CAS Google Scholar
  21. Fujisawa, T., Joshi, B., Nakajima, A. & Puri, R. K. A novel role of interleukin-13 receptor α2 in pancreatic cancer invasion and metastasis. Cancer Res. 69, 8678–8685 (2009)
    Article CAS Google Scholar
  22. David, M., Bertoglio, J. & Pierre, J. TNF-α potentiates IL-4/IL-13-induced IL-13Rα2 expression. Ann. NY Acad. Sci. 973, 207–209 (2002)
    Article ADS CAS Google Scholar
  23. Zhang, X. Y. et al. The major histocompatibility complex class II promoter-binding protein RFX (NF-X) is a methylated DNA-binding protein. Mol. Cell. Biol. 13, 6810–6818 (1993)
    Article CAS Google Scholar
  24. Lindsay, R. S. et al. Type 2 diabetes and low birth weight: the role of paternal inheritance in the association of low birth weight and diabetes. Diabetes 49, 445–449 (2000)
    Article CAS Google Scholar
  25. Hypponen, E., Smith, G. D. & Power, C. Parental diabetes and birth weight of offspring: intergenerational cohort study. Br. Med. J. 326, 19–20 (2003)
    Article Google Scholar
  26. Hattersley, A. T. & Tooke, J. E. The fetal insulin hypothesis: an alternative explanation of the association of low birthweight with diabetes and vascular disease. Lancet 353, 1789–1792 (1999)
    Article CAS Google Scholar
  27. Sharpe, R. M. Environmental/lifestyle effects on spermatogenesis. Phil. Trans. R. Soc. Lond. B 365, 1697–1712 (2010)
    Article CAS Google Scholar
  28. Robertson, S. A. Seminal plasma and male factor signalling in the female reproductive tract. Cell Tissue Res. 322, 43–52 (2005)
    Article Google Scholar
  29. Aitken, R. J., Koopman, P. & Lewis, S. E. Seeds of concern. Nature 432, 48–52 (2004)
    Article ADS CAS Google Scholar
  30. Du Plessis, S. S., Cabler, S., McAlister, D. A., Sabanegh, E. & Agarwal, A. The effect of obesity on sperm disorders and male infertility. Nature Rev. Urol. 7, 153–161 (2010)
    Article Google Scholar
  31. Prior, L. J., Velkoska, E., Watts, R., Cameron-Smith, D. & Morris, M. J. Undernutrition during suckling in rats elevates plasma adiponectin and its receptor in skeletal muscle regardless of diet composition: a protective effect? Int. J. Obes. (Lond) 32, 1585–1594 (2008)
    Article CAS Google Scholar
  32. Chamson-Reig, A., Thyssen, S. M., Arany, E. & Hill, D. J. Altered pancreatic morphology in the offspring of pregnant rats given reduced dietary protein is time and gender specific. J. Endocrinol. 191, 83–92 (2006)
    Article CAS Google Scholar
  33. Lacy, P. E. & Kostianovsky, M. Method for the isolation of intact islets of Langerhans from the rat pancreas. Diabetes 16, 35–39 (1967)
    Article CAS Google Scholar
  34. Laybutt, D. R. et al. Increased expression of antioxidant and antiapoptotic genes in islets that may contribute to β-cell survival during chronic hyperglycemia. Diabetes 51, 413–423 (2002)
    Article CAS Google Scholar
  35. Laybutt, D. R. et al. Critical reduction in β-cell mass results in two distinct outcomes over time. Adaptation with impaired glucose tolerance or decompensated diabetes. J. Biol. Chem. 278, 2997–3005 (2003)
    Article CAS Google Scholar
  36. Irizarry, R. A. et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4, 249–264 (2003)
    Article Google Scholar
  37. Huang, da W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols 4, 44–57 (2009)
    Article CAS Google Scholar
  38. Dennis, G., Jr et al. DAVID: database for annotation, visualization, and integrated discovery. Genome Biol. 4, P3 (2003)
    Article Google Scholar
  39. Saeed, A. I. et al. TM4: a free, open-source system for microarray data management and analysis. Biotechniques 34, 374–378 (2003)
    Article CAS Google Scholar
  40. Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000)
    Article CAS Google Scholar
  41. Olek, A., Oswald, J. & Walter, J. A modified and improved method for bisulphite based cytosine methylation analysis. Nucleic Acids Res. 24, 5064–5066 (1996)
    Article CAS Google Scholar
  42. Grunau, C., Schattevoy, R., Mache, N. & Rosenthal, A. MethTools—a toolbox to visualize and analyze DNA methylation data. Nucleic Acids Res. 28, 1053–1058 (2000)
    Article CAS Google Scholar

Download references