Cramer, S. C. Repairing the human brain after stroke: I. Mechanisms of spontaneous recovery. Ann. Neurol.63, 272–287 (2008) Article Google Scholar
Brown, C. E., Aminoltejari, K., Erb, H., Winship, I. R. & Murphy, T. H. In vivo voltage-sensitive dye imaging in adult mice reveals that somatosensory maps lost to stroke are replaced over weeks by new structural and functional circuits with prolonged modes of activation within both the peri-infarct zone and distant sites. J. Neurosci.29, 1719–1734 (2009) ArticleCAS Google Scholar
Dijkhuizen, R. M. et al. Correlation between brain reorganization, ischemic damage, and neurologic status after transient focal cerebral ischemia in rats: a functional magnetic resonance imaging study. J. Neurosci.23, 510–517 (2003) ArticleCAS Google Scholar
Dobkin, B. H. Training and exercise to drive poststroke recovery. Nature Clin. Pract. Neurol.4, 76–85 (2008) Article Google Scholar
Carmichael, S. T. Cellular and molecular mechanisms of neural repair after stroke: making waves. Ann. Neurol.59, 735–742 (2006) ArticleCAS Google Scholar
Nudo, R. J. Mechanisms for recovery of motor function following cortical damage. Curr. Opin. Neurobiol.16, 638–644 (2006) ArticleCAS Google Scholar
Alonso-Alonso, M., Fregni, F. & Pascual-Leone, A. Brain stimulation in poststroke rehabilitation. Cerebrovasc. Dis.24 (suppl. 1). 157–166 (2007) Article Google Scholar
Di Lazzaro, V. et al. Motor cortex plasticity predicts recovery in acute stroke. Cereb. Cortex20, 1523–1528 (2010) Article Google Scholar
Hensch, T. K. Critical period plasticity in local cortical circuits. Nature Rev. Neurosci.6, 877–888 (2005) ArticleCAS Google Scholar
Donoghue, J. P., Suner, S. & Sanes, J. N. Dynamic organization of primary motor cortex output to target muscles in adult rats. II. Rapid reorganization following motor nerve lesions. Exp. Brain Res.79, 492–503 (1990) ArticleCAS Google Scholar
Foeller, E., Celikel, T. & Feldman, D. E. Inhibitory sharpening of receptive fields contributes to whisker map plasticity in rat somatosensory cortex. J. Neurophysiol.94, 4387–4400 (2005) Article Google Scholar
Hess, G., Aizenman, C. D. & Donoghue, J. P. Conditions for the induction of long-term potentiation in layer II/III horizontal connections of the rat motor cortex. J. Neurophysiol.75, 1765–1778 (1996) ArticleCAS Google Scholar
Glykys, J. & Mody, I. Hippocampal network hyperactivity after selective reduction of tonic inhibition in GABAA receptor α5 subunit-deficient mice. J. Neurophysiol.95, 2796–2807 (2006) ArticleCAS Google Scholar
Walker, M. C. & Semyanov, A. Regulation of excitability by extrasynaptic GABA(A) receptors. Results Probl. Cell Differ.44, 29–48 (2008) ArticleCAS Google Scholar
Collinson, N. et al. Enhanced learning and memory and altered GABAergic synaptic transmission in mice lacking the α5 subunit of the GABAA receptor. J. Neurosci.22, 5572–5580 (2002) ArticleCAS Google Scholar
Atack, J. R. et al. L-655,708 enhances cognition in rats but is not proconvulsant at a dose selective for α5-containing GABAA receptors. Neuropharmacology51, 1023–1029 (2006) ArticleCAS Google Scholar
Keros, S. & Hablitz, J. J. Subtype-specific GABA transporter antagonists synergistically modulate phasic and tonic GABAA conductances in rat neocortex. J. Neurophysiol.94, 2073–2085 (2005) ArticleCAS Google Scholar
Glykys, J. & Mody, I. Activation of GABAA receptors: views from outside the synaptic cleft. Neuron56, 763–770 (2007) ArticleCAS Google Scholar
Yoshiike, Y. et al. GABAA receptor-mediated acceleration of aging-associated memory decline in APP/PS1 mice and its pharmacological treatment by picrotoxin. PLoS ONE3, e3029 (2008) ArticleADS Google Scholar
Cui, Y. et al. Neurofibromin regulation of ERK signaling modulates GABA release and learning. Cell135, 549–560 (2008) ArticleCAS Google Scholar
Ginsberg, M. D. Neuroprotection for ischemic stroke: past, present and future. Neuropharmacology55, 363–389 (2008) ArticleCAS Google Scholar
Que, M. et al. Changes in GABA(A) and GABA(B) receptor binding following cortical photothrombosis: a quantitative receptor autoradiographic study. Neurosci. Lett.93, 1233–1240 (1999) ArticleCAS Google Scholar
Redecker, C., Luhmann, H. J., Hagemann, G., Fritschy, J. M. & Witte, O. W. Differential downregulation of GABAA receptor subunits in widespread brain regions in the freeze-lesion model of focal cortical malformations. J. Neurosci.20, 5045–5053 (2000) ArticleCAS Google Scholar
Frahm, C. et al. Regulation of GABA transporter mRNA and protein after photothrombotic infarct in rat brain. J. Comp. Neurol.478, 176–188 (2004) ArticleCAS Google Scholar
Neumann-Haefelin, T. et al. Immunohistochemical evidence for dysregulation of the GABAergic system ipsilateral to photochemically induced cortical infarcts in rats. Neuroscience87, 871–879 (1998) ArticleCAS Google Scholar
Kharlamov, E. A., Downey, K. L., Jukkola, P. I., Grayson, D. R. & Kelly, K. M. Expression of GABAA receptor α1 subunit mRNA and protein in rat neocortex following photothrombotic infarction. Brain Res.1210, 29–38 (2008) ArticleCAS Google Scholar
Lee, J. K., Kim, J. E., Sivula, M. & Strittmatter, S. M. Nogo receptor antagonism promotes stroke recovery by enhancing axonal plasticity. J. Neurosci.24, 6209–6217 (2004) ArticleCAS Google Scholar
Tanaka, Y., Furuta, T., Yanagawa, Y. & Kaneko, T. The effects of cutting solutions on the viability of GABAergic interneurons in cerebral cortical slices of adult mice. J. Neurosci. Methods171, 118–125 (2008) ArticleCAS Google Scholar
Baskin, Y. K., Dietrich, W. D. & Green, E. J. Two effective behavioral tasks for evaluating sensorimotor dysfunction following traumatic brain injury in mice. J. Neurosci. Methods129, 87–93 (2003) Article Google Scholar
Ohab, J. J., Fleming, S., Blesch, A. & Carmichael, S. T. A neurovascular niche for neurogenesis after stroke. J. Neurosci.26, 13007–13016 (2006) ArticleCAS Google Scholar
Lee, K., Kim, J. E., Sivula, M. & Strittmater, S. M. Nogo receptor antagonism promotes stroke recovery by enhamcing axonal plasticity. J. Neurosci.24, 6209–6217 (2004) ArticleCAS Google Scholar
Glykys, J., Mann, E. O. & Mody, I. Which GABAA receptor subunits are necessary for tonic inhibition in the hippocampus? J. Neurosci.28, 1421–1426 (2008) ArticleCAS Google Scholar
STAIR Recommendations for standards regarding preclinical neuroprotective and restorative drug development. Stroke.30, 2752–2758 (1999) Article Google Scholar
Fisher, M., Feuerstein, G., Howells, D. W., Hurn, P. D., Kent, T. A., Savitz, S. I. & Lo, E. H. Update of the stroke therapy academic industry roundtable preclinical recommendations. Stroke.40, 2244–2250 (2009) Article Google Scholar
Stell, B. & Mody, I. Receptors with different affinities mediate phasic and tonic GABAA conductances in hippocampal neurons. J. Neurosci.22, RC223 (2002) Article Google Scholar
Verheugen, J. A., Fricker, D. & Miles, R. Noninvasive measurements of the membrane potential and GABAergic action in hippocampal interneurons. J. Neurosci.19, 2546–2555 (1999) ArticleCAS Google Scholar
Barlow, R. Cumulative frequency curves in population analysis. Trends Pharmacol. Sci.11, 404–406 (1990) ArticleCAS Google Scholar
Baskin, Y. K., Dietrich, W. D. & Green, E. J. Two effective behavioral tasks for evaluating sensorimotor dysfunction following traumatic brain injury in mice. J. Neurosci. Methods129, 87–93 (2003) Article Google Scholar
Schallert, T., Fleming, S. M., Leasure, J. L., Tillerson, J. L. & Bland, S. T. CNS plasticity and assessment of forelimb sensorimotor outcome in unilateral rat models of stroke, cortical ablation, parkinsonism and spinal cord injury. Neuropharmacology39, 777–787 (2000) ArticleCAS Google Scholar
Moore, C. S. et al. Increased X-linked inhibitor of apoptosis protein (XIAP) expression exacerbates experimental autoimmune encephalomyelitis (EAE). J. Neuroimmunol.203, 79–93 (2008) ArticleCAS Google Scholar