Reducing excessive GABA-mediated tonic inhibition promotes functional recovery after stroke (original) (raw)

References

  1. Cramer, S. C. Repairing the human brain after stroke: I. Mechanisms of spontaneous recovery. Ann. Neurol. 63, 272–287 (2008)
    Article Google Scholar
  2. Brown, C. E., Aminoltejari, K., Erb, H., Winship, I. R. & Murphy, T. H. In vivo voltage-sensitive dye imaging in adult mice reveals that somatosensory maps lost to stroke are replaced over weeks by new structural and functional circuits with prolonged modes of activation within both the peri-infarct zone and distant sites. J. Neurosci. 29, 1719–1734 (2009)
    Article CAS Google Scholar
  3. Dijkhuizen, R. M. et al. Correlation between brain reorganization, ischemic damage, and neurologic status after transient focal cerebral ischemia in rats: a functional magnetic resonance imaging study. J. Neurosci. 23, 510–517 (2003)
    Article CAS Google Scholar
  4. Dobkin, B. H. Training and exercise to drive poststroke recovery. Nature Clin. Pract. Neurol. 4, 76–85 (2008)
    Article Google Scholar
  5. Carmichael, S. T. Cellular and molecular mechanisms of neural repair after stroke: making waves. Ann. Neurol. 59, 735–742 (2006)
    Article CAS Google Scholar
  6. Nudo, R. J. Mechanisms for recovery of motor function following cortical damage. Curr. Opin. Neurobiol. 16, 638–644 (2006)
    Article CAS Google Scholar
  7. Alonso-Alonso, M., Fregni, F. & Pascual-Leone, A. Brain stimulation in poststroke rehabilitation. Cerebrovasc. Dis. 24 (suppl. 1). 157–166 (2007)
    Article Google Scholar
  8. Di Lazzaro, V. et al. Motor cortex plasticity predicts recovery in acute stroke. Cereb. Cortex 20, 1523–1528 (2010)
    Article Google Scholar
  9. Hensch, T. K. Critical period plasticity in local cortical circuits. Nature Rev. Neurosci. 6, 877–888 (2005)
    Article CAS Google Scholar
  10. Donoghue, J. P., Suner, S. & Sanes, J. N. Dynamic organization of primary motor cortex output to target muscles in adult rats. II. Rapid reorganization following motor nerve lesions. Exp. Brain Res. 79, 492–503 (1990)
    Article CAS Google Scholar
  11. Foeller, E., Celikel, T. & Feldman, D. E. Inhibitory sharpening of receptive fields contributes to whisker map plasticity in rat somatosensory cortex. J. Neurophysiol. 94, 4387–4400 (2005)
    Article Google Scholar
  12. Hess, G., Aizenman, C. D. & Donoghue, J. P. Conditions for the induction of long-term potentiation in layer II/III horizontal connections of the rat motor cortex. J. Neurophysiol. 75, 1765–1778 (1996)
    Article CAS Google Scholar
  13. Glykys, J. & Mody, I. Hippocampal network hyperactivity after selective reduction of tonic inhibition in GABAA receptor α5 subunit-deficient mice. J. Neurophysiol. 95, 2796–2807 (2006)
    Article CAS Google Scholar
  14. Walker, M. C. & Semyanov, A. Regulation of excitability by extrasynaptic GABA(A) receptors. Results Probl. Cell Differ. 44, 29–48 (2008)
    Article CAS Google Scholar
  15. Collinson, N. et al. Enhanced learning and memory and altered GABAergic synaptic transmission in mice lacking the α5 subunit of the GABAA receptor. J. Neurosci. 22, 5572–5580 (2002)
    Article CAS Google Scholar
  16. Atack, J. R. et al. L-655,708 enhances cognition in rats but is not proconvulsant at a dose selective for α5-containing GABAA receptors. Neuropharmacology 51, 1023–1029 (2006)
    Article CAS Google Scholar
  17. Keros, S. & Hablitz, J. J. Subtype-specific GABA transporter antagonists synergistically modulate phasic and tonic GABAA conductances in rat neocortex. J. Neurophysiol. 94, 2073–2085 (2005)
    Article CAS Google Scholar
  18. Glykys, J. & Mody, I. Activation of GABAA receptors: views from outside the synaptic cleft. Neuron 56, 763–770 (2007)
    Article CAS Google Scholar
  19. Yoshiike, Y. et al. GABAA receptor-mediated acceleration of aging-associated memory decline in APP/PS1 mice and its pharmacological treatment by picrotoxin. PLoS ONE 3, e3029 (2008)
    Article ADS Google Scholar
  20. Cui, Y. et al. Neurofibromin regulation of ERK signaling modulates GABA release and learning. Cell 135, 549–560 (2008)
    Article CAS Google Scholar
  21. Ginsberg, M. D. Neuroprotection for ischemic stroke: past, present and future. Neuropharmacology 55, 363–389 (2008)
    Article CAS Google Scholar
  22. Que, M. et al. Changes in GABA(A) and GABA(B) receptor binding following cortical photothrombosis: a quantitative receptor autoradiographic study. Neurosci. Lett. 93, 1233–1240 (1999)
    Article CAS Google Scholar
  23. Redecker, C., Luhmann, H. J., Hagemann, G., Fritschy, J. M. & Witte, O. W. Differential downregulation of GABAA receptor subunits in widespread brain regions in the freeze-lesion model of focal cortical malformations. J. Neurosci. 20, 5045–5053 (2000)
    Article CAS Google Scholar
  24. Frahm, C. et al. Regulation of GABA transporter mRNA and protein after photothrombotic infarct in rat brain. J. Comp. Neurol. 478, 176–188 (2004)
    Article CAS Google Scholar
  25. Neumann-Haefelin, T. et al. Immunohistochemical evidence for dysregulation of the GABAergic system ipsilateral to photochemically induced cortical infarcts in rats. Neuroscience 87, 871–879 (1998)
    Article CAS Google Scholar
  26. Kharlamov, E. A., Downey, K. L., Jukkola, P. I., Grayson, D. R. & Kelly, K. M. Expression of GABAA receptor α1 subunit mRNA and protein in rat neocortex following photothrombotic infarction. Brain Res. 1210, 29–38 (2008)
    Article CAS Google Scholar
  27. Lee, J. K., Kim, J. E., Sivula, M. & Strittmatter, S. M. Nogo receptor antagonism promotes stroke recovery by enhancing axonal plasticity. J. Neurosci. 24, 6209–6217 (2004)
    Article CAS Google Scholar
  28. Tanaka, Y., Furuta, T., Yanagawa, Y. & Kaneko, T. The effects of cutting solutions on the viability of GABAergic interneurons in cerebral cortical slices of adult mice. J. Neurosci. Methods 171, 118–125 (2008)
    Article CAS Google Scholar
  29. Baskin, Y. K., Dietrich, W. D. & Green, E. J. Two effective behavioral tasks for evaluating sensorimotor dysfunction following traumatic brain injury in mice. J. Neurosci. Methods 129, 87–93 (2003)
    Article Google Scholar
  30. Ohab, J. J., Fleming, S., Blesch, A. & Carmichael, S. T. A neurovascular niche for neurogenesis after stroke. J. Neurosci. 26, 13007–13016 (2006)
    Article CAS Google Scholar
  31. Lee, K., Kim, J. E., Sivula, M. & Strittmater, S. M. Nogo receptor antagonism promotes stroke recovery by enhamcing axonal plasticity. J. Neurosci. 24, 6209–6217 (2004)
    Article CAS Google Scholar
  32. Glykys, J., Mann, E. O. & Mody, I. Which GABAA receptor subunits are necessary for tonic inhibition in the hippocampus? J. Neurosci. 28, 1421–1426 (2008)
    Article CAS Google Scholar
  33. STAIR Recommendations for standards regarding preclinical neuroprotective and restorative drug development. Stroke. 30, 2752–2758 (1999)
    Article Google Scholar
  34. Fisher, M., Feuerstein, G., Howells, D. W., Hurn, P. D., Kent, T. A., Savitz, S. I. & Lo, E. H. Update of the stroke therapy academic industry roundtable preclinical recommendations. Stroke. 40, 2244–2250 (2009)
    Article Google Scholar
  35. Stell, B. & Mody, I. Receptors with different affinities mediate phasic and tonic GABAA conductances in hippocampal neurons. J. Neurosci. 22, RC223 (2002)
    Article Google Scholar
  36. Verheugen, J. A., Fricker, D. & Miles, R. Noninvasive measurements of the membrane potential and GABAergic action in hippocampal interneurons. J. Neurosci. 19, 2546–2555 (1999)
    Article CAS Google Scholar
  37. Barlow, R. Cumulative frequency curves in population analysis. Trends Pharmacol. Sci. 11, 404–406 (1990)
    Article CAS Google Scholar
  38. Baskin, Y. K., Dietrich, W. D. & Green, E. J. Two effective behavioral tasks for evaluating sensorimotor dysfunction following traumatic brain injury in mice. J. Neurosci. Methods 129, 87–93 (2003)
    Article Google Scholar
  39. Schallert, T., Fleming, S. M., Leasure, J. L., Tillerson, J. L. & Bland, S. T. CNS plasticity and assessment of forelimb sensorimotor outcome in unilateral rat models of stroke, cortical ablation, parkinsonism and spinal cord injury. Neuropharmacology 39, 777–787 (2000)
    Article CAS Google Scholar
  40. Moore, C. S. et al. Increased X-linked inhibitor of apoptosis protein (XIAP) expression exacerbates experimental autoimmune encephalomyelitis (EAE). J. Neuroimmunol. 203, 79–93 (2008)
    Article CAS Google Scholar

Download references