Formation, regulation and evolution of Caenorhabditis elegans 3′UTRs (original) (raw)

References

  1. Moore, M. J. From birth to death: the complex lives of eukaryotic mRNAs. Science 309, 1514–1518 (2005)
    Article ADS CAS Google Scholar
  2. Martin, K. C. & Ephrussi, A. mRNA localization: gene expression in the spatial dimension. Cell 136, 719–730 (2009)
    Article CAS Google Scholar
  3. Ahringer, J. & Kimble, J. Control of the sperm-oocyte switch in Caenorhabditis elegans hermaphrodites by the fem-3 3′ untranslated region. Nature 349, 346–348 (1991)
    Article ADS CAS Google Scholar
  4. Wightman, B., Burglin, T. R., Gatto, J., Arasu, P. & Ruvkun, G. Negative regulatory sequences in the lin-14 3′-untranslated region are necessary to generate a temporal switch during Caenorhabditis elegans development. Genes Dev. 5, 1813–1824 (1991)
    Article CAS Google Scholar
  5. Merritt, C., Rasoloson, D., Ko, D. & Seydoux, G. 3′ UTRs are the primary regulators of gene expression in the C. elegans germline. Curr. Biol. 18, 1476–1482 (2008)
    Article CAS Google Scholar
  6. Rogers, A. et al. WormBase 2007. Nucleic Acids Res. 36, D612–D617 (2008)
    Article CAS Google Scholar
  7. Mangone, M., Macmenamin, P., Zegar, C., Piano, F. & Gunsalus, K. C. UTRome.org: a platform for 3′UTR biology in C. elegans . Nucleic Acids Res. 36, D57–D62 (2008)
    Article CAS Google Scholar
  8. Mangone, M. et al. The landscape of C. elegans 3′UTRs. Science 329, 432–435 (2010)
    Article ADS CAS Google Scholar
  9. Nam, D. K. et al. Oligo(dT) primer generates a high frequency of truncated cDNAs through internal poly(A) priming during reverse transcription. Proc. Natl Acad. Sci. USA 99, 6152–6156 (2002)
    Article ADS CAS Google Scholar
  10. Hillier, L. W. et al. Massively parallel sequencing of the polyadenylated transcriptome of C. elegans . Genome Res. 19, 657–666 (2009)
    Article CAS Google Scholar
  11. Pruitt, K. D., Tatusova, T. & Maglott, D. R. NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 35, D61–D65 (2007)
    Article CAS Google Scholar
  12. Nunes, N. M., Li, W., Tian, B. & Furger, A. A functional human poly(A) site requires only a potent DSE and an A-rich upstream sequence. EMBO J. 29, 1523–1536 (2010)
    Article CAS Google Scholar
  13. Evans, D. et al. A complex containing CstF-64 and the SL2 snRNP connects mRNA 3′ end formation and _trans_-splicing in C. elegans operons. Genes Dev. 15, 2562–2571 (2001)
    Article CAS Google Scholar
  14. Prescott, E. M. & Proudfoot, N. J. Transcriptional collision between convergent genes in budding yeast. Proc. Natl Acad. Sci. USA 99, 8796–8801 (2002)
    Article ADS CAS Google Scholar
  15. Batista, P. J. et al. PRG-1 and 21U-RNAs interact to form the piRNA complex required for fertility in C. elegans . Mol. Cell 31, 67–78 (2008)
    Article CAS Google Scholar
  16. Chiang, H. R. et al. Mammalian microRNAs: experimental evaluation of novel and previously annotated genes. Genes Dev. 24, 992–1009 (2010)
    Article CAS Google Scholar
  17. Ruby, J. G., Jan, C. H. & Bartel, D. P. Intronic microRNA precursors that bypass Drosha processing. Nature 448, 83–86 (2007)
    Article ADS CAS Google Scholar
  18. Friedman, R. C., Farh, K. K., Burge, C. B. & Bartel, D. P. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 19, 92–105 (2009)
    Article CAS Google Scholar
  19. Zisoulis, D. G. et al. Comprehensive discovery of endogenous Argonaute binding sites in Caenorhabditis elegans . Nature Struct. Mol. Biol. 17, 173–179 (2010)
    Article CAS Google Scholar
  20. Clark, A. M. et al. The microRNA miR-124 controls gene expression in the sensory nervous system of Caenorhabditis elegans . Nucleic Acids Res. 38, 3780–3793 (2010)
    Article ADS CAS Google Scholar
  21. Lall, S. et al. A genome-wide map of conserved microRNA targets in C. elegans . Curr. Biol. 16, 460–471 (2006)
    Article CAS Google Scholar
  22. Reinhart, B. J. et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans . Nature 403, 901–906 (2000)
    Article ADS CAS Google Scholar
  23. Abrahante, J. E. et al. The _Caenorhabditis elegans hunchback_-like gene lin-57/hbl-1 controls developmental time and is regulated by microRNAs. Dev. Cell 4, 625–637 (2003)
    Article CAS Google Scholar
  24. Tian, B., Hu, J., Zhang, H. & Lutz, C. S. A large-scale analysis of mRNA polyadenylation of human and mouse genes. Nucleic Acids Res. 33, 201–212 (2005)
    Article CAS Google Scholar
  25. Wang, E. T. et al. Alternative isoform regulation in human tissue transcriptomes. Nature 456, 470–476 (2008)
    Article ADS CAS Google Scholar
  26. Sandberg, R., Neilson, J. R., Sarma, A., Sharp, P. A. & Burge, C. B. Proliferating cells express mRNAs with shortened 3′ untranslated regions and fewer microRNA target sites. Science 320, 1643–1647 (2008)
    Article ADS CAS Google Scholar
  27. Ji, Z., Lee, J. Y., Pan, Z., Jiang, B. & Tian, B. Progressive lengthening of 3′ untranslated regions of mRNAs by alternative polyadenylation during mouse embryonic development. Proc. Natl Acad. Sci. USA 106, 7028–7033 (2009)
    Article ADS CAS Google Scholar
  28. Mayr, C. & Bartel, D. P. Widespread shortening of 3′UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell 138, 673–684 (2009)
    Article CAS Google Scholar
  29. Lau, N. C., Lim, L. P., Weinstein, E. G. & Bartel, D. P. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans . Science 294, 858–862 (2001)
    Article ADS CAS Google Scholar
  30. Mandel, C. R., Bai, Y. & Tong, L. Protein factors in pre-mRNA 3'-end processing. Cell Mol. Life Sci. 65, 1099–1122 (2008)
    Article CAS Google Scholar
  31. Guo, H., Ingolia, N. T., Weissman, J. S. & Bartel, D. P. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466, 835–840 (2010)
    Article ADS CAS Google Scholar
  32. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009)
    Article Google Scholar
  33. Maglott, D., Ostell, J., Pruitt, K. D. & Tatusova, T. Entrez Gene: gene-centered information at NCBI. Nucleic Acids Res. 35, D26–D31 (2007)
    Article CAS Google Scholar
  34. The C. elegans Sequencing Consortium. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282, 2012–2018 (1998)
  35. Blumenthal, T. Trans-splicing and operons. WormBook 25, 1–9 (2005)
    MathSciNet Google Scholar
  36. Karolchik, D. et al. The UCSC genome browser database. Nucleic Acids Res. 31, 51–54 (2003)
    Article CAS Google Scholar

Download references