The redox state of arc mantle using Zn/Fe systematics (original) (raw)

References

  1. Carmichael, I. S. E. The redox states of basic and silicic magmas: a reflection of their source regions? Contrib. Mineral. Petrol. 106, 129–141 (1991)
    Article ADS CAS Google Scholar
  2. Bezos, A. & Humler, E. The Fe3+/Fe ratios of MORB glasses and their implications for mantle melting. Geochim. Cosmochim. Acta 69, 711–725 (2005)
    Article ADS CAS Google Scholar
  3. Kelley, K. A. & Cottrell, E. Water and the oxidation state of subduction zone magmas. Science 325, 605–607 (2009)
    Article ADS CAS Google Scholar
  4. Christie, D. M., Carmichael, I. S. E. & Langmuir, C. H. Oxidation states of mid-ocean ridge basalt glasses. Earth Planet. Sci. Lett. 79, 397–411 (1986)
    Article ADS CAS Google Scholar
  5. Gill, J. B. Orogenic Andesites and Plate Tectonics (Springer, 1981)
    Book Google Scholar
  6. Mallmann, G. & O’Neill, H. S. C. The crystal/melt partitioning of V during mantle melting as a function of oxygen fugacity compared with some other elements (Al, P, Ca, Sc, Ti, Cr, Fe, Ga, Y, Zr and Nb). J. Petrol. 50, 1765–1794 (2009)
    Article ADS CAS Google Scholar
  7. Lee, C.-T. A., Leeman, W. P., Canil, D. & Li, Z.-X. A. Similar V/Sc systematics in MORB and arc basalts: implications for the oxygen fugacities of their mantle source regions. J. Petrol. 46, 2313–2336 (2005)
    Article ADS CAS Google Scholar
  8. Frost, B. R. in Oxide Minerals: Petrologic and Magnetic Significance (ed. Lindsley, D. H.) Vol. 25, 1–9 (Mineral. Soc. Am. Rev. Min., 1991)
    Book Google Scholar
  9. Wood, B. J., Bryndzia, L. T. & Johnson, K. E. Mantle oxidation state and its relationship to tectonic environment and fluid speciation. Science 248, 337–345 (1990)
    Article ADS CAS Google Scholar
  10. Osborn, E. F. Role of oxygen partial pressure in the crystallization and differentiation of basaltic magma. Am. J. Sci. 257, 609–647 (1959)
    Article ADS CAS Google Scholar
  11. Arculus, R. J. Use and abuse of the terms calcalkaline and calcalkalic. J. Petrol. 44, 929–935 (2003)
    Article ADS CAS Google Scholar
  12. Alt, J. C., Honnorez, J., Laverne, C. & Emmermann, R. Hydrothermal alteration of a 1 km section through the upper oceanic crust, Deep Sea Drilling Project Hole 504B: mineralogy, chemistry, and evolution of seawater-basalt interactions. J. Geophys. Res. 91, 10309–10335 (1986)
    Article ADS CAS Google Scholar
  13. Mungall, J. E. Roasting the mantle: slab melting and the genesis of major Au and Au-rich Cu deposits. Geology 30, 915–918 (2002)
    Article ADS CAS Google Scholar
  14. Sisson, T. W. & Grove, T. L. Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism. Contrib. Mineral. Petrol. 113, 143–166 (1993)
    Article ADS CAS Google Scholar
  15. Patino, L. C., Carr, M. J. & Feigenson, M. D. Local and regional variations in Central American arc lavas controlled by variations in subducted sediment input. Contrib. Mineral. Petrol. 138, 265–283 (2000)
    Article ADS CAS Google Scholar
  16. McInnes, B. I. A., Gregoire, M., Binns, R. A., Herzig, P. M. & Hannington, M. D. Hydrous metasomatism of oceanic sub-arc mantle, Lihir, Papua New Guinea: petrology and geochemistry of fluid-metasomatised mantle wedge xenoliths. Earth Planet. Sci. Lett. 188, 169–183 (2001)
    Article ADS CAS Google Scholar
  17. Parkinson, I. J. & Arculus, R. J. The redox state of subduction zones: insights from arc-peridotites. Chem. Geol. 160, 409–423 (1999)
    Article ADS CAS Google Scholar
  18. Ishimaru, S., Arai, S. & Shukuno, H. Metal-saturated peridotite in the mantle wedge inferred from metal-bearing peridotite xenoliths from Avacha volcano, Kamchatka. Earth Planet. Sci. Lett. 284, 352–360 (2009)
    Article ADS CAS Google Scholar
  19. Malaspina, N., Poli, S. & Fumagalli, P. The oxidation state of metasomatized mantle wedge: insights from C-O-H-bearing garnet peridotite. J. Petrol. 50, 1533–1552 (2009)
    Article ADS CAS Google Scholar
  20. Wang, J., Hattori, K. H., Kilian, R. & Stern, C. R. Metasomatism of sub-arc mantle peridotites below southernmost South America: reduction of fO2 by slab-melt. Contrib. Mineral. Petrol. 153, 607–624 (2007)
    Article ADS CAS Google Scholar
  21. Frost, D. J. & McCammon, C. A. The redox state of Earth’s mantle. Annu. Rev. Earth Planet. Sci. 36, 389–420 (2008)
    Article ADS CAS Google Scholar
  22. Canil, D. et al. Ferric iron in peridotites and mantle oxidation states. Earth Planet. Sci. Lett. 123, 205–220 (1994)
    Article ADS CAS Google Scholar
  23. Canil, D. Vanadium partitioning and the oxidation state of Archaean komatiite magmas. Nature 389, 842–845 (1997)
    Article ADS CAS Google Scholar
  24. Dauphas, N. et al. Iron isotopes may reveal the redox conditions of mantle melting from Archean to present. Earth Planet. Sci. Lett. 288, 255–267 (2009)
    Article ADS CAS Google Scholar
  25. Teng, F.-Z., Dauphas, N. & Helz, R. T. Iron isotope fractionation during magmatic differentiation in Kilauea Iki lava lake. Science 320, 1620–1622 (2008)
    Article ADS CAS Google Scholar
  26. Roeder, P. L. & Emslie, R. F. Olivine-liquid equilibrium. Contrib. Mineral. Petrol. 29, 275–289 (1970)
    Article ADS CAS Google Scholar
  27. Lange, R. A. & Carmichael, I. S. E. The Aurora volcanic field, California-Nevada: oxygen fugacity constraints on the development of andesitic magma. Contrib. Mineral. Petrol. 125, 167–185 (1996)
    Article ADS CAS Google Scholar
  28. Le Roux, V., Lee, C.-T. A. & Turner, S. J. Zn/Fe systematics in mafic and ultramafic systems: implications for detecting major element heterogeneities in the Earth’s mantle. Geochim. Cosmochim. Acta 74, 2779–2796 (2010)
    Article ADS CAS Google Scholar
  29. Kress, V. C. & Carmichael, I. S. E. The compressibility of silicate liquids containing Fe2O3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states. Contrib. Mineral. Petrol. 108, 82–92 (1991)
    Article ADS CAS Google Scholar
  30. Rowe, M. C., Kent, A. J. R. & Nielsen, R. L. Subduction influence on oxygen fugacity and trace and volatile elements in basalts across the Cascade Volcanic Arc. J. Petrol. 50, 61–91 (2009)
    Article ADS CAS Google Scholar
  31. Holloway, J. R. Redox reactions in seafloor basalts: possible insights into silicic hydrothermal systems. Chem. Geol. 210, 225–230 (2004)
    Article ADS CAS Google Scholar

Download references