Acoelomorph flatworms are deuterostomes related to Xenoturbella (original) (raw)

References

  1. Bourlat, S. et al. Deuterostome phylogeny reveals monophyletic chordates and the new phylum Xenoturbellida. Nature 444, 85–88 (2006)
    Article ADS CAS Google Scholar
  2. Bourlat, S., Nielsen, C., Lockyer, A., Littlewood, D. T. J. & Telford, M. J. Xenoturbella is a deuterostome that eats molluscs. Nature 424, 925–928 (2003)
    Article ADS CAS Google Scholar
  3. Egger, B. et al. To be or not to be a flatworm: the acoel controversy. PLoS ONE 4, e5502 (2009)
    Article ADS Google Scholar
  4. Telford, M. J., Lockyer, A. E., Cartwright-Finch, C. & Littlewood, D. T. J. Combined large and small subunit ribosomal RNA phylogenies support a basal position of the acoelomorph flatworms. Proc. R. Soc. Lond. B 270, 1077–1083 (2003)
    Article CAS Google Scholar
  5. Sempere, L. F., Cole, C. N., McPeek, M. A. & Peterson, K. J. The phylogenetic distribution of metazoan microRNAs: insights into evolutionary complexity and constraint. J. Exp. Zool. B 306, 575–588 (2006)
    Article Google Scholar
  6. Ruiz Trillo, I., Riutort, M., Littlewood, D. T. J., Herniou, E. A. & Baguñà, J. Acoel flatworms: earliest extant bilaterian metazoans, not members of Platyhelminthes. Science 283, 1919–1923 (1999)
    Article ADS CAS Google Scholar
  7. Hejnol, A. et al. Assessing the root of bilaterian animals with scalable phylogenomic methods. Proc. R. Soc. B 276, 4261–4270 (2009)
    Article Google Scholar
  8. Sempere, L. F., Martinez, P., Cole, C., Baguñà, J. & Peterson, K. J. Phylogenetic distribution of microRNAs supports the basal position of acoel flatworms and the polyphyly of Platyhelminthes. Evol. Dev. 9, 409–415 (2007)
    Article CAS Google Scholar
  9. Ruiz-Trillo, I. et al. A phylogenetic analysis of myosin heavy chain type II sequences corroborates that Acoela and Nemertodermatida are basal bilaterians. Proc. Natl Acad. Sci. USA 99, 11246–11251 (2002)
    Article ADS CAS Google Scholar
  10. Bourlat, S. J., Rota-Stabelli, O., Lanfear, R. & Telford, M. J. The mitochondrial genome structure of Xenoturbella bocki (phylum Xenoturbellida) is ancestral within the deuterostomes. BMC Evol. Biol. 9, 107 (2009)
    Article Google Scholar
  11. Philippe, H., Brinkmann, H., Martinez, P., Riutort, M. & Baguñà, J. Acoel flatworms are not platyhelminthes: evidence from phylogenomics. PLoS ONE 2, e717 (2007)
    Article ADS Google Scholar
  12. Rodríguez-Ezpeleta, N. et al. Detecting and overcoming systematic errors in genome-scale phylogenies. Syst. Biol. 56, 389–399 (2007)
    Article Google Scholar
  13. Lartillot, N. & Philippe, H. Improvement of molecular phylogenetic inference and the phylogeny of Bilateria. Phil. Trans. R. Soc. B 363, 1463–1472 (2008)
    Article Google Scholar
  14. Ruiz Trillo, I., Riutort, M., Fourcade, H. M., Baguña, J. & Boore, J. Mitochondrial genome data support the basal position of Acoelomorpha and the polyphyly of the Platyhelminthes. Mol. Phyl. Evol. 33, 321–332 (2004)
    Article CAS Google Scholar
  15. Papillon, D., Perez, Y., Caubit, X. & Le Parco, Y. Identification of chaetognaths as protostomes is supported by the analysis of their mitochondrial genome. Mol. Biol. Evol. 21, 2122–2129 (2004)
    Article CAS Google Scholar
  16. Sperling, E. A. & Peterson, K. J. in Animal Evolution. Genomes, Fossils and Trees (eds Telford, M. J. & Littlewood, D. T. J. ) Ch. 15, 157–170 (Oxford Univ. Press, 2009)
    Book Google Scholar
  17. Lundin, K. Degenerating epidermal cells in Xenoturbella bocki (phylum uncertain), Nemertodermatida and Acoela (Platyhelminthes). Belg. J. Zool. 131, 153–157 (2001)
    Google Scholar
  18. Westblad, E. Xenoturbella bocki n.g, n.sp, a peculiar, primitive turbellarian type. Arkiv Zool 1, 3–29 (1949)
    Google Scholar
  19. Nielsen, C. After all: Xenoturbella is an acoelomorph!. Evol. Dev. 12, 241–243 (2010)
    Article Google Scholar
  20. Franzen, A. & Afzelius, B. A. The ciliated epidermis of Xenoturbella bocki (Platyhelminthes, Xenoturbellida) with some phylogenetic considerations. Zool. Scr. 16, 9–17 (1987)
    Article Google Scholar
  21. Pardos, F. Fine structure and function of pharynx cilia in Glossobalanus minutus Kowalewsky (Entropneusta). Acta Zool. 69, 1–12 (1988)
    Article Google Scholar
  22. Tyler, S. in Interrelationships of the Platyhelminthes (eds Littlewood, D. T. J. & Bray, R. A. ) 3–12 (Taylor & Francis, 2001)
    Google Scholar
  23. Telford, M. J. Xenoturbellida: the fourth deuterostome phylum and the diet of worms. Genesis 46, 580–586 (2008)
    Article Google Scholar
  24. Baguña, J., Martinez, P., Paps, J. & Riutort, M. Back in time: a new systematic proposal for the Bilateria. Proc. R. Soc. B 363, 1481–1491 (2008)
    Google Scholar
  25. Hejnol, A. & Martindale, M. Q. M. Acoel development supports a simple planula-like urbilaterian. Phil. Trans. R. Soc. B 363, 1493–1501 (2008)
    Article Google Scholar
  26. Peterson, K. J., McPeek, M. A. & Evans, D. A. Tempo and mode of early animal evolution: inferences from rocks, Hox, and molecular clocks. Paleobiology 31, 36–55 (2005)
    Article Google Scholar
  27. Ruppert, E. E. Key characters uniting hemichordates and chordates: homologies or homoplasies? Can. J. Zool. 83, 8–23 (2005)
    Article Google Scholar
  28. Philippe, H. et al. Phylogenomics revives traditional views on deep animal relationships. Curr. Biol. 19, 706–712 (2009)
    Article CAS Google Scholar
  29. Lartillot, N. & Philippe, H. A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. Mol. Biol. Evol. 21, 1095–1109 (2004)
    Article CAS Google Scholar
  30. Wheeler, B. et al. The deep evolution of metazoan microRNAs. Evol. Dev. 11, 50–68 (2009)
    Article CAS Google Scholar
  31. Birney, E., Clamp, M. & Durbin, R. GeneWise and GenomeWise. Genome Res. 14, 988–995 (2004)
    Article CAS Google Scholar
  32. Huang, X. & Madan, A. CAP3: a DNA assembly programme. Genome Res. 9, 868–877 (1999)
    Article CAS Google Scholar
  33. Abascal, F., Zardoya, R. & Telford, M. J. TranslatorX: multiple alignment of nucleotide sequences guided by amino acid translations. Nucleic Acids Res. 38, W7–W13 (2010)
    Article CAS Google Scholar
  34. Jeanmougin, F., Thompson, J. D., Gouy, M., Higgins, D. G. & Gibson, T. J. Multiple sequence alignment with Clustal X. Trends Biochem. Sci. 23, 403–405 (1998)
    Article CAS Google Scholar
  35. Dunn, C. W. et al. Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 452, 745–749 (2008)
    Article ADS CAS Google Scholar
  36. Philippe, H. MUST, a computer package of management utilities for sequences and trees. Nucleic Acids Res. 21, 5264–5272 (1993)
    Article CAS Google Scholar
  37. Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17, 540–552 (2000)
    Article CAS Google Scholar
  38. Roure, B., Rodriguez-Ezpeleta, N. & Philippe, H. SCaFoS: a tool for selection, concatenation and fusion of sequences for phylogenomics. BMC Evol. Biol. 7 (Suppl. 1). S2 (2007)
    Article Google Scholar
  39. Schmidt, H. A., Strimmer, K., Vingron, M. & von Haeseler, A. TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18, 502–504 (2002)
    Article CAS Google Scholar
  40. Lartillot, N., Lepage, T. & Blanquart, S. PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics 25, 2286–2288 (2009)
    Article CAS Google Scholar
  41. Lartillot, N., Brinkmann, H. & Philippe, H. Suppression of long-branch attraction artefacts in the animal phylogeny using a site-heterogeneous model. BMC Evol. Biol. 7 (Suppl. 1). S4 (2007)
    Article Google Scholar
  42. Felsenstein, J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791 (1985)
    Article Google Scholar
  43. Felsenstein, J. PHYLIP (Phylogeny Inference Package) version 3.69 (Department of Genome Sciences, Univ. Washington, Seattle, 2005)
    Google Scholar
  44. Stamatakis, A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690 (2006)
    Article CAS Google Scholar
  45. Blanquart, S. & Lartillot, N. A site- and time-heterogeneous model of amino acid replacement. Mol. Biol. Evol. 25, 842–858 (2008)
    Article CAS Google Scholar
  46. Hrdy, I. et al. Trichomonas hydrogenosomes contain the NADH dehydrogenase module of mitochondrial complex I. Nature 432, 618–622 (2004)
    Article ADS CAS Google Scholar
  47. Roure, B. & Philippe, H. Site-specific time heterogeneity of the substitution process and its impact on phylogenetic inference. BMC Evol. Biol (in the press)

Download references