Wiring specificity in the direction-selectivity circuit of the retina (original) (raw)
Barlow, H. B., Hill, R. M. & Levick, W. R. Retinal ganglion cells responding selectively to direction and speed of image motion in the rabbit. J. Physiol. (Lond.)173, 377–407 (1964) ArticleCAS Google Scholar
Barlow, H. B. & Levick, W. R. The mechanism of directionally selective units in rabbit’s retina. J. Physiol. (Lond.)178, 477–504 (1965) ArticleCAS Google Scholar
Taylor, W. R. & Vaney, D. I. Diverse synaptic mechanisms generate direction selectivity in the rabbit retina. J. Neurosci.22, 7712–7720 (2002) ArticleCAS Google Scholar
Fried, S. I., Munch, T. A. & Werblin, F. S. Mechanisms and circuitry underlying directional selectivity in the retina. Nature420, 411–414 (2002) ArticleADSCAS Google Scholar
Famiglietti, E. V. Synaptic organization of starburst amacrine cells in rabbit retina: analysis of serial thin sections by electron microscopy and graphic reconstruction. J. Comp. Neurol.309, 40–70 (1991) ArticleCAS Google Scholar
Tauchi, M. & Masland, R. H. The shape and arrangement of the cholinergic neurons in the rabbit retina. Proc. R. Soc. Lond. B223, 101–119 (1984) ArticleADSCAS Google Scholar
Yoshida, K. et al. A key role of starburst amacrine cells in originating retinal directional selectivity and optokinetic eye movement. Neuron30, 771–780 (2001) ArticleCAS Google Scholar
O’Malley, D. M., Sandell, J. H. & Masland, R. H. Co-release of acetylcholine and GABA by the starburst amacrine cells. J. Neurosci.12, 1394–1408 (1992) Article Google Scholar
Euler, T., Detwiler, P. B. & Denk, W. Directionally selective calcium signals in dendrites of starburst amacrine cells. Nature418, 845–852 (2002) ArticleADSCAS Google Scholar
Chiao, C. C. & Masland, R. H. Starburst cells nondirectionally facilitate the responses of direction-selective retinal ganglion cells. J. Neurosci.22, 10509–10513 (2002) ArticleCAS Google Scholar
Grzywacz, N. M., Tootle, J. S. & Amthor, F. R. Is the input to a GABAergic or cholinergic synapse the sole asymmetry in rabbit’s retinal directional selectivity? Vis. Neurosci.14, 39–54 (1997) ArticleCAS Google Scholar
Taylor, W. R. & Vaney, D. I. New directions in retinal research. Trends Neurosci.26, 379–385 (2003) ArticleCAS Google Scholar
Demb, J. B. Cellular mechanisms for direction selectivity in the retina. Neuron55, 179–186 (2007) ArticleCAS Google Scholar
Schachter, M. J. et al. Dendritic spikes amplify the synaptic signal to enhance detection of motion in a simulation of the direction-selective ganglion cell. PLOS Comput. Biol.6, (2010)
Borg-Graham, L. J. The computation of directional selectivity in the retina occurs presynaptic to the ganglion cell. Nature Neurosci.4, 176–183 (2001) ArticleCAS Google Scholar
Wei, W., Hamby, A. M., Zhou, K. & Feller, M. B. Development of asymmetric inhibition underlying direction selectivity in the retina. Nature469, 402–406 (2010) ArticleADS Google Scholar
Lee, S., Kim, K. & Zhou, Z. J. Role of ACh-GABA co-transmission in detecting image motion and motion direction. Neuron68, 1159–1172 (2010) ArticleCAS Google Scholar
Yonehara, K. et al. Spatially asymmetric reorganization of inhibition establishes a motion-sensitive circuit. Nature469, 407–410 (2010) ArticleADS Google Scholar
Mumm, J. S. et al. Laminar circuit formation in the vertebrate retina. Prog. Brain Res.147, 155–169 (2005) Article Google Scholar
Famiglietti, E. V. A structural basis for omnidirectional connections between starburst amacrine cells and directionally selective ganglion cells in rabbit retina, with associated bipolar cells. Vis. Neurosci.19, 145–162 (2002) ArticleCAS Google Scholar
Dong, W. et al. Dendritic relationship between starburst amacrine cells and direction-selective ganglion cells in the rabbit retina. J. Physiol. (Lond.)556, 11–17 (2004) ArticleCAS Google Scholar
Chen, Y. C. & Chiao, C. C. Symmetric synaptic patterns between starburst amacrine cells and direction selective ganglion cells in the rabbit retina. J. Comp. Neurol.508, 175–183 (2008) Article Google Scholar
Dacheux, R. F., Chimento, M. F. & Amthor, F. R. Synaptic input to the on-off directionally selective ganglion cell in the rabbit retina. J. Comp. Neurol.456, 267–278 (2003) ArticleCAS Google Scholar
White, J. G. et al. The structure of the nervous system of the nematode Caenorhabditis elegans. Phil. Trans. R. Soc. Lond.314, 1–340 (1986) ArticleCAS Google Scholar
Denk, W. & Horstmann, H. Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biol.2, e329 (2004) Article Google Scholar
Oyster, C. W., Amthor, F. R. & Takahashi, E. S. Dendritic architecture of ON-OFF direction-selective ganglion cells in the rabbit retina. Vision Res.33, 579–608 (1993) ArticleCAS Google Scholar
Yang, G. & Masland, R. H. Receptive fields and dendritic structure of directionally selective retinal ganglion cells. J. Neurosci.14, 5267–5280 (1994) ArticleCAS Google Scholar
Denk, W. & Detwiler, P. B. Optical recording of light-evoked calcium signals in the functionally intact retina. Proc. Natl Acad. Sci. USA96, 7035–7040 (1999) ArticleADSCAS Google Scholar
Blankenship, A. G. et al. Synaptic and extrasynaptic factors governing glutamatergic retinal waves. Neuron62, 230–241 (2009) ArticleCAS Google Scholar
Stosiek, C. et al. In vivo two-photon calcium imaging of neuronal networks. Proc. Natl Acad. Sci. USA100, 7319–7324 (2003) ArticleADSCAS Google Scholar
Denk, W., Strickler, J. H. & Webb, W. W. Two-photon laser scanning fluorescence microscopy. Science248, 73–76 (1990) ArticleADSCAS Google Scholar
Euler, T. et al. Eyecup scope–optical recordings of light stimulus-evoked fluorescence signals in the retina. Pflugers Arch.457, 1393–1414 (2009) ArticleCAS Google Scholar
Oyster, C. W. & Barlow, H. B. Direction-selective units in rabbit retina: distribution of preferred directions. Science155, 841–842 (1967) ArticleADSCAS Google Scholar
Yamada, E. S. et al. Synaptic connections of starburst amacrine cells and localization of acetylcholine receptors in primate retinas. J. Comp. Neurol.461, 76–90 (2003) ArticleCAS Google Scholar
Keeley, P. W. et al. Dendritic spread and functional coverage of starburst amacrine cells. J. Comp. Neurol.505, 539–546 (2007) Article Google Scholar
Hausselt, S. E. et al. A dendrite-autonomous mechanism for direction selectivity in retinal starburst amacrine cells. PLoS Biol.5, e185 (2007) Article Google Scholar
Lee, S. & Zhou, Z. J. The synaptic mechanism of direction selectivity in distal processes of starburst amacrine cells. Neuron51, 787–799 (2006) ArticleCAS Google Scholar
Oesch, N. W. & Taylor, W. R. Tetrodotoxin-resistant sodium channels contribute to directional responses in starburst amacrine cells. PLoS ONE5, e12447 (2010) ArticleADS Google Scholar
He, S., Jin, Z. F. & Masland, R. H. The nondiscriminating zone of directionally selective retinal ganglion cells: comparison with dendritic structure and implications for mechanism. J. Neurosci.19, 8049–8056 (1999) ArticleCAS Google Scholar
Kittila, C. A. & Massey, S. C. Effect of ON pathway blockade on directional selectivity in the rabbit retina. J. Neurophysiol.73, 703–712 (1995) ArticleCAS Google Scholar
Caldwell, J. H., Daw, N. W. & Wyatt, H. J. Effects of picrotoxin and strychnine on rabbit retinal ganglion cells: lateral interactions for cells with more complex receptive fields. J. Physiol. (Lond.)276, 277–298 (1978) ArticleCAS Google Scholar
Vaney, D. I. & Young, H. M. GABA-like immunoreactivity in cholinergic amacrine cells of the rabbit retina. Brain Res.438, 369–373 (1988) ArticleCAS Google Scholar
Fried, S. I., Munch, T. A. & Werblin, F. S. Directional selectivity is formed at multiple levels by laterally offset inhibition in the rabbit retina. Neuron46, 117–127 (2005) ArticleCAS Google Scholar
Dmitrieva, N. A. et al. Identification of cholinoceptive glycinergic neurons in the mammalian retina. J. Comp. Neurol.456, 167–175 (2003) Article Google Scholar
Dmitrieva, N. A., Strang, C. E. & Keyser, K. T. Expression of α7 nicotinic acetylcholine receptors by bipolar, amacrine, and ganglion cells of the rabbit retina. J. Histochem. Cytochem.55, 461–476 (2007) ArticleCAS Google Scholar
Wickersham, I. R. et al. Retrograde neuronal tracing with a deletion-mutant rabies virus. Nature Methods4, 47–49 (2007) ArticleCAS Google Scholar
Granstedt, A. E. et al. Fluorescence-based monitoring of in vivo neural activity using a circuit-tracing pseudorabies virus. PLoS ONE4, e6923 (2009) ArticleADS Google Scholar
Briggman, K. L. & Euler, T. Bulk electroporation and population calcium imaging in the adult mammalian retina. J. Neurophysiol (in the press)
Schlichtenbrede, F. C. et al. Toxicity assessment of intravitreal triamcinolone and bevacizumab in a retinal explant mouse model using two-photon microscopy. Invest. Ophthalmol. Vis. Sci.50, 5880–5887 (2009) Article Google Scholar
Fahmy, A. An Extemporaneous Lead Citrate Stain for Electron Microscopy 148–149 (Proc. 25th Annu. EMSA Meeting, 1967) Google Scholar
Glauert, A. M. & Lewis, P. R. Biological specimen preparation for transmission electron microscopy. In Practical Methods in Electron Microscopy xxi (Princeton Univ. Press, 1998) Google Scholar
Karnovsky, M. J. Use of Ferrocyanide-reduced osmium in electron microscopy 146 (Proc. 14th Annual Meeting Am. Soc. Cell Biol., 1971) Google Scholar
Seligman, A. M., Wasserkrug, H. L. & Hanker, J. S. A new staining method (OTO) for enhancing contrast of lipid-containing membranes and droplets in osmium tetroxide-fixed tissue with osmiophilic thiocarbohydrazide (TCH). J. Cell Biol.30, 424–432 (1966) ArticleCAS Google Scholar
Walton, J. Lead asparate, an en bloc contrast stain particularly useful for ultrastructural enzymology. J. Histochem. Cytochem.27, 1337–1342 (1979) ArticleCAS Google Scholar
Yushkevich, P. A. et al. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage31, 1116–1128 (2006) Article Google Scholar