Phylogenomic analyses unravel annelid evolution (original) (raw)

References

  1. Dordel, J., Fisse, F., Purschke, G. & Struck, T. H. Phylogenetic position of Sipuncula derived from multi-gene and phylogenomic data and its implication for the evolution of segmentation. J. Zool. Syst. Evol. Res. 48, 197–207 (2010)
    Google Scholar
  2. Struck, T. H., Nesnidal, M. P., Purschke, G. & Halanych, K. M. Detecting possibly saturated positions in 18S and 28S sequences and their influence on phylogenetic reconstruction of Annelida (Lophotrochozoa). Mol. Phylogenet. Evol. 48, 628–645 (2008)
    Article CAS Google Scholar
  3. Struck, T. H. et al. Annelida phylogeny and the status of Sipuncula and Echiura. BMC Evol. Biol. 7, 57 (2007)
    Article Google Scholar
  4. McHugh, D. Molecular evidence that echiurans and pogonophorans are derived annelids. Proc. Natl Acad. Sci. USA 94, 8006–8009 (1997)
    Article ADS CAS Google Scholar
  5. Raible, F. et al. Vertebrate-type intron-rich genes in the marine annelid Platynereis dumerilii. Science 310, 1325–1326 (2005)
    Article ADS CAS Google Scholar
  6. Tessmar-Raible, K. & Arendt, D. Emerging systems: between vertebrates and arthropods, the Lophotrochozoa. Curr. Opin. Genet. Dev. 13, 331–340 (2003)
    Article CAS Google Scholar
  7. Rivera, A. & Weisblat, D. And Lophotrochozoa makes three: Notch/Hes signaling in annelid segmentation. Dev. Genes Evol. 219, 37–43 (2009)
    Article CAS Google Scholar
  8. Shain, D. H. Annelids in Modern Biology (Wiley, 2009)
    Book Google Scholar
  9. Erséus, C. Phylogeny of oligochaetous Clitellata. Hydrobiologia 535–536, 357–372 (2005)
    Google Scholar
  10. McHugh, D. Molecular systematics of polychaetes (Annelida). Hydrobiologia 535–536, 309–318 (2005)
    Google Scholar
  11. Fauvel, P. Polychètes errantes. Faune de France 5, 1–488 (1923)
    Google Scholar
  12. Fauvel, P. Polychètes sédentaires. Faune de France 16, 1–494 (1927)
    Google Scholar
  13. de Quatrefages, A. M. Histoire Naturelle des Annelides, Marine et d'Eau Douce. Annelides et Gephyriens Vol. 1 (Librairie Encyclopédique de Roret, 1866)
    Google Scholar
  14. Day, J. H. A Monograph on the Polychaeta of Southern Africa. Part 1. Errantia (British Museum (Natural History), 1967)
    Google Scholar
  15. Rouse, G. W. & Fauchald, K. Cladistics and polychaetes. Zool. Scr. 26, 139–204 (1997)
    Article Google Scholar
  16. Eibye-Jacobsen, D. A reevaluation of Wiwaxia and the polychaetes of the Burgess Shale. Lethaia 37, 317–335 (2004)
    Article Google Scholar
  17. Rouse, G. W. & Pleijel, F. Polychaetes (Oxford Univ. Press, 2001)
    Google Scholar
  18. Bleidorn, C. et al. On the phylogenetic position of Myzostomida: can 77 genes get it wrong? BMC Evol. Biol. 9, 150 (2009)
    Article Google Scholar
  19. Bleidorn, C. et al. Mitochondrial genome and nuclear sequence data support Myzostomida as part of the annelid radiation. Mol. Biol. Evol. 24, 1690–1701 (2007)
    Article CAS Google Scholar
  20. Eeckhaut, I., Fievez, L. & Müller, M. C. M. Larval development of Myzostoma cirriferum (Myzostomida). J. Morphol. 258, 269–283 (2003)
    Article Google Scholar
  21. Westheide, W. The direction of evolution within the Polychaeta. J. Nat. Hist. 31, 1–15 (1997)
    Article Google Scholar
  22. Suschenko, D. & Purschke, G. Ultrastructure of pigmented adult eyes in errant polychaetes (Annelida): implications for annelid evolution. Zoomorphology 128, 75–96 (2009)
    Article Google Scholar
  23. Fauchald, K. & Jumars, P. A. The diet of worms: a study of polychaete feedings guilds. Oceanogr. Mar. Biol. Annu. Rev. 17, 193–284 (1979)
    Google Scholar
  24. Christodoulou, F. et al. Ancient animal microRNAs and the evolution of tissue identity. Nature 463, 1084–1088 (2010)
    Article ADS CAS Google Scholar
  25. Hausdorf, B. et al. Spiralian phylogenomics supports the resurrection of Bryozoa comprising Ectoprocta and Entoprocta. Mol. Biol. Evol. 24, 2723–2729 (2007)
    Article CAS Google Scholar
  26. Ebersberger, I., Strauss, S. & von Haeseler, A. HaMStR: profile Hidden Markov Model based search for orthologs in ESTs. BMC Evol. Biol. 9, 157 (2009)
    Article Google Scholar
  27. Birney, E., Clamp, M. & Durbin, R. GeneWise and Genomewise. Genome Res. 14, 988–995 (2004)
    Article CAS Google Scholar
  28. Katoh, K., Kuma, K.-i., Toh, H. & Miyata, T. MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res. 33, 511–518 (2005)
    Article CAS Google Scholar
  29. Hartmann, S. & Vision, T. Using ESTs for phylogenomics: can one accurately infer a phylogenetic tree from a gappy alignment? BMC Evol. Biol. 8, 95 (2008)
    Article Google Scholar
  30. Smith, S. A. & Dunn, C. W. Phyutility: a phyloinformatics tool for trees, alignments and molecular data. Bioinformatics 24, 715–716 (2008)
    Article CAS Google Scholar
  31. NCBI dbEST (Expressed Sequence Tags Database)http://www.ncbi.nlm.nih.gov/projects/dbEST/〉 (2010)
  32. Helmkampf, M., Bruchhaus, I. & Hausdorf, B. Phylogenomic analyses of lophophorates (brachiopods, phoronids and bryozoans) confirm the Lophotrochozoa concept. Proc. R. Soc. Lond. B 275, 1927–1933 (2008)
    Article Google Scholar
  33. Struck, T. H. & Fisse, F. Phylogenetic position of Nemertea derived from phylogenomic data. Mol. Biol. Evol. 25, 728–736 (2008)
    Article CAS Google Scholar
  34. Ribosomal Protein Gene Databasehttp://ribosome.med.miyazaki-u.ac.jp〉 (2010)
  35. InParanoid: Eukaryotic Ortholog Groups (100 organisms: 1687023 sequences)http://inparanoid.sbc.su.se/cgi-bin/index.cgi〉 (2010)
  36. Abascal, F., Zardoya, R. & Posada, D. ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21, 2104–2105 (2005)
    Article CAS Google Scholar
  37. Stamatakis, A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690 (2006)
    Article CAS Google Scholar
  38. Pattengale, N. D., Alipour, M., Bininda-Emonds, O. R. P., Moret, B. M. E. & Stamatakis, A. in RECOMB 2009, LNCS 5541 (ed. Batzoglou, S.) 184–200 (Springer, 2009)
    Google Scholar
  39. Lartillot, N. & Philippe, H. A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. Mol. Biol. Evol. 21, 1095–1109 (2004)
    Article CAS Google Scholar
  40. Lartillot, N., Brinkmann, H. & Philippe, H. Suppression of long-branch attraction artefacts in the animal phylogeny using a site-heterogeneous model. BMC Evol. Biol. 7, S4 (2007)
    Article Google Scholar
  41. Rambaut, A. & Drummond, A. J. Tracer v1. 4http://beast.bio.ed.ac.uk/Tracer〉 (2007)
  42. Zhou, Y., Rodrigue, N., Lartillot, N. & Philippe, H. Evaluation of the models handling heterotachy in phylogenetic inference. BMC Evol. Biol. 7, 206 (2007)
    Article Google Scholar
  43. Zrzavý, J., Riha, P., Pialek, L. & Janouskovec, J. Phylogeny of Annelida (Lophotrochozoa): total-evidence analysis of morphology and six genes. BMC Evol. Biol. 9, 189 (2009)
    Article Google Scholar
  44. Rouse, G. W. Trochophore concepts: ciliary bands and the evolution of larvae in spiralian Metazoa. Biol. J. Linn. Soc. 66, 411–464 (1999)
    Article Google Scholar
  45. Hartmann-Schröder, G. Teil 58. Annelida, Borstenwürmer, Polychaeta 2nd edn (Gustav Fischer, 1996)
    Google Scholar
  46. Westheide, W. & Rieger, R. M. Spezielle Zoologie. Erster Teil: Einzeller und Wirbellose Tiere (Gustav Fischer, 1996)
    Google Scholar
  47. Purschke, G., Arendt, D., Hausen, H. & Müller, M. C. M. Photoreceptor cells and eyes in Annelida. Arthropod Struct. Dev. 35, 211–230 (2006).
    Article Google Scholar
  48. Maddison, W. P. & Maddison, D. R. Mesquite: a modular system for evolutionary analysis. Version 2.71. Mesquite Projecthttp://mesquiteproject.org〉 (2009)
  49. Purschke, G., Hessling, R. & Westheide, W. The phylogenetic position of the Clitellata and the Echiura — on the problematic assessment of absent characters. J. Zool. Syst. Evol. Res. 38, 165–173 (2000)
    Article Google Scholar
  50. Wiens, J. J. Does adding characters with missing data increase or decrease phylogenetic accuracy? Syst. Biol. 47, 625–640 (1998)
    Article CAS Google Scholar
  51. Wiens, J. J., Bonett, R. M. & Chippindale, P. T. Ontogeny discombobulates phylogeny: paedomorphosis and higher-level salamander relationships. Syst. Biol. 54, 91–110 (2005)
    Article Google Scholar
  52. Bleidorn, C. The role of character loss in phylogenetic reconstruction as exemplified for the Annelida. J. Zool. Syst. Evol. Res. 45, 299–307 (2007)
    Article Google Scholar
  53. Bleidorn, C., Hill, N., Erséus, C. & Tiedemann, R. On the role of character loss in orbiniid phylogeny (Annelida): molecules vs. morphology. Mol. Phylogenet. Evol. 52, 57–69 (2009)
    Article CAS Google Scholar
  54. Struck, T. H. Progenetic species in polychaetes (Annelida) and problems assessing their phylogenetic affiliation. Integr. Comp. Biol. 46, 558–568 (2006)
    Article Google Scholar
  55. Struck, T. H. Data congruence, paedomorphosis and salamanders. Front. Zool. 4, 22 (2007)
    Article Google Scholar

Download references