Ancestral polyploidy in seed plants and angiosperms (original) (raw)

References

  1. Ohno, S. Evolution by Gene Duplication (Springer, 1970)
    Book Google Scholar
  2. Lynch, M. The Origins of Genome Architecture (Sinauer, 2007)
    Google Scholar
  3. Edger, P. P. & Pires, J. C. Gene and genome duplications: the impact of dosage-sensitivity on the fate of nuclear genes. Chromosome Res. 17, 699–717 (2009)
    Article CAS Google Scholar
  4. De Bodt, S., Maere, S. & Van de Peer, Y. Genome duplication and the origin of angiosperms. Trends Ecol. Evol. 20, 591–597 (2005)
    Article Google Scholar
  5. Soltis, D. E., Bell, C. D., Kim, S. & Soltis, P. S. Origin and early evolution of angiosperms. Ann. NY Acad. Sci. 1133, 3–25 (2008)
    Article ADS CAS Google Scholar
  6. Fawcett, J. A., Maere, S. & Van de Peer, Y. Plants with double genomes might have had a better chance to survive the Cretaceous-Tertiary extinction event. Proc. Natl Acad. Sci. USA 106, 5737–5742 (2009)
    Article ADS CAS Google Scholar
  7. Lyons, E. et al. Finding and comparing syntenic regions among Arabidopsis and the outgroups papaya, poplar, and grape: CoGe with rosids. Plant Physiol. 148, 1772–1781 (2008)
    Article CAS Google Scholar
  8. Bowers, J. E., Chapman, B. A., Rong, J. & Paterson, A. H. Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422, 433–438 (2003)
    Article ADS CAS Google Scholar
  9. Jaillon, O. et al. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449, 463–467 (2007)
    Article ADS CAS Google Scholar
  10. Vision, T. J., Brown, D. G. & Tanksley, S. D. The origins of genomic duplications in Arabidopsis . Science 290, 2114–2117 (2000)
    Article ADS CAS Google Scholar
  11. Barker, M. S., Vogel, H. & Schranz, M. E. Paleopolyploidy in the Brassicales: analyses of the Cleome transcriptome elucidate the history of genome duplications in Arabidopsis and other Brassicales. Genome Biol. Evol. 1, 391–399 (2009)
    Article Google Scholar
  12. Tang, H. et al. Synteny and collinearity in plant genomes. Science 320, 486–488 (2008)
    Article ADS CAS Google Scholar
  13. Tang, H. et al. Unraveling ancient hexaploidy through multiply-aligned angiosperm gene maps. Genome Res. 18, 1944–1954 (2008)
    Article CAS Google Scholar
  14. Tuskan, G. A. et al. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313, 1596–1604 (2006)
    Article ADS CAS Google Scholar
  15. Tang, H., Bowers, J. E., Wang, X. & Paterson, A. H. Angiosperm genome comparisons reveal early polyploidy in the monocot lineage. Proc. Natl Acad. Sci. USA 107, 472–477 (2010)
    Article ADS CAS Google Scholar
  16. Cui, L. et al. Widespread genome duplications throughout the history of flowering plants. Genome Res. 16, 738–749 (2006)
    Article CAS Google Scholar
  17. Blomme, T. et al. The gain and loss of genes during 600 million years of vertebrate evolution. Genome Biol. 7, R43 (2006)
    Article Google Scholar
  18. Ebersberger, I., Strauss, S. & von Haeseler, A. HaMStR: profile hidden Markov model based search for orthologs in ESTs. BMC Evol. Biol. 9, 157 (2009)
    Article Google Scholar
  19. Moore, M. J., Bell, C. D., Soltis, P. S. & Soltis, D. E. Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms. Proc. Natl Acad. Sci. USA 104, 19363–19368 (2007)
    Article ADS Google Scholar
  20. McLachlan, G., Peel, D., Basford, K. E. & Adams, P. The EMMIX algorithm for the fitting of normal and t-components. J. Stat. Softw. 4, i02 (1999)
    Article Google Scholar
  21. Bell, C. D., Soltis, D. E. & Soltis, P. S. The age of the angiosperms: a molecular timescale without a clock. Evolution 59, 1245–1258 (2005)
    Article CAS Google Scholar
  22. Schneider, H. et al. Ferns diversified in the shadow of angiosperms. Nature 428, 553–557 (2004)
    Article ADS CAS Google Scholar
  23. Freeling, M. Bias in plant gene content following different sorts of duplication: tandem, whole-genome, segmental, or by transposition. Annu. Rev. Plant Biol. 60, 433–453 (2009)
    Article CAS Google Scholar
  24. Kassahn, K. S., Dang, V. T., Wilkins, S. J., Perkins, A. C. & Ragan, M. A. Evolution of gene function and regulatory control after whole-genome duplication: comparative analyses in vertebrates. Genome Res. 19, 1404–1418 (2009)
    Article CAS Google Scholar
  25. Devlin, P. F., Patel, S. R. & Whitelam, G. C. Phytochrome E influences internode elongation and flowering time in Arabidopsis . Plant Cell 10, 1479–1487 (1998)
    Article CAS Google Scholar
  26. Dechaine, J. M., Gardner, G. & Weinig, C. Phytochromes differentially regulate seed germination responses to light quality and temperature cues during seed maturation. Plant Cell Environ. 32, 1297–1309 (2009)
    Article CAS Google Scholar
  27. Mathews, S., Burleigh, J. G. & Donoghue, M. J. Adaptive evolution in the photosensory domain of phytochrome A in early angiosperms. Mol. Biol. Evol. 20, 1087–1097 (2003)
    Article CAS Google Scholar
  28. Parry, G. et al. Complex regulation of the TIR1/AFB family of auxin receptors. Proc. Natl Acad. Sci. USA 106, 22540–22545 (2009)
    Article ADS CAS Google Scholar
  29. Hu, W., dePamphilis, C. W. & Ma, H. Phylogenetic analysis of the plant-specific zinc finger-homeobox and mini zinc finger gene families. J. Integr. Plant Biol. 50, 1031–1045 (2008)
    Article CAS Google Scholar
  30. Prigge, M. J. & Clark, S. E. Evolution of the class III HD-Zip gene family in land plants. Evol. Dev. 8, 350–361 (2006)
    Article CAS Google Scholar
  31. Buggs, R. J. et al. Gene loss and silencing in Tragopogon miscellus (Asteraceae): comparison of natural and synthetic allotetraploids. Heredity 103, 73–81 (2009)
    Article CAS Google Scholar
  32. Vandepoele, K., Simillion, C. & Van de Peer, Y. Detecting the undetectable: uncovering duplicated segments in Arabidopsis by comparison with rice. Trends Genet. 18, 606–608 (2002)
    Article CAS Google Scholar
  33. Blanc, G. & Wolfe, K. H. Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell 16, 1667–1678 (2004)
    Article CAS Google Scholar
  34. Van de Peer, Y., Fawcett, J. A., Proost, S., Sterck, L. & Vandepoele, K. The flowering world: a tale of duplications. Trends Plant Sci. 14, 680–688 (2009)
    Article CAS Google Scholar
  35. Li, L., Stoeckert, C. J., Jr & Roos, D. S. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 13, 2178–2189 (2003)
    Article CAS Google Scholar
  36. Proost, S. et al. PLAZA: a comparative genomics resource to study gene and genome evolution in plants. Plant Cell 21, 3718–3731 (2009)
    Article CAS Google Scholar
  37. Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004)
    Article CAS Google Scholar
  38. Capella-Gutierrez, S., Silla-Martinez, J. M. & Gabaldon, T. TrimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009)
    Article CAS Google Scholar
  39. Thompson, J. D., Gibson, T. J. & Higgins, D. G. Multiple sequence alignment using ClustalW and ClustalX. Curr. Protoc. Bioinf. 2.3.1–2.3.22. (2002)
  40. Stamatakis, A., Ludwig, T. & Meier, H. RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinformatics 21, 456–463 (2005)
    Article CAS Google Scholar
  41. Stamatakis, A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690 (2006)
    Article CAS Google Scholar
  42. Felsenstein, J. Cases in which parsimony or compatibility methods will be positively misleading. Syst. Zool. 27, 401–410 (1978)
    Article Google Scholar
  43. Hendy, M. D. & Penny, D. A framework for the quantitative study of evolutionary trees. Syst. Zool. 38, 297–309 (1989)
    Article Google Scholar
  44. Sanderson, M. J. r8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics 19, 301–302 (2003)
    Article CAS Google Scholar
  45. Rensing, S. A. et al. The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319, 64–69 (2008)
    Article ADS CAS Google Scholar
  46. Kenrick, P. & Crane, P. R. The origin and early evolution of plants on land. Nature 389, 33–39 (1997)
    Article ADS CAS Google Scholar
  47. Miller, C. N. J. Implications of fossil conifers for the phylogenetic relationships of living families. Bot. Rev. 65, 239–277 (1999)
    Article Google Scholar
  48. Doyle, J. A. & Hotton, C. L. in Pollen and Spores: Patterns of Diversification (eds Blackmore, S. & Barnes, S. H. ) 169–195 (Clarendon, 1991)
    Google Scholar
  49. Suyama, M., Torrents, D. & Bork, P. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 34, W609–W612 (2006)
    Article CAS Google Scholar
  50. Goldman, N. & Yang, Z. A codon-based model of nucleotide substitution for protein-coding DNA sequences. Mol. Biol. Evol. 11, 725–736 (1994)
    CAS PubMed Google Scholar
  51. Yang, Z. PAML: a program package for phylogenetic analysis by maximum likelihood. Comput. Appl. Biosci. 13, 555–556 (1997)
    CAS Google Scholar
  52. Ashburner, M. et al. Gene ontology: tool for the unification of biology. Nature Genet. 25, 25–29 (2000)
    Article CAS Google Scholar
  53. Zdobnov, E. M. & Apweiler, R. InterProScan - an integration platform for the signature-recognition methods in InterPro. Bioinformatics 17, 847–848 (2001)
    Article CAS Google Scholar
  54. Du, Z., Zhou, X., Ling, Y., Zhang, Z. & Su, Z. agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res. 38, W64–W70 (2010)
    Article CAS Google Scholar

Download references

Acknowledgements

This work was supported primarily by NSF Plant Genome Research Program (DEB 0638595, The Ancestral Angiosperm Genome Project) and in part by the Department of Biology and by the Huck Institutes of Life Sciences of the Pennsylvania State University. H.M. was also supported by funds from Fudan University. We thank J. Carlson, M. Frohlich, S. DiLoretto, L. Warg, S. Crutchfield, C. Johnson, N. Naznin, X. Zhou, J. Duarte, B. J. Bliss, J. Der and E. Wafula for help and discussion, D. Stevenson and C. Schultz for Zamia samples, J. McNeal, S. Kim and M. Axtell for photographs, and all the members of The Genome Center at Washington University production team, especially L. Fulton, K. Delehaunty and C. Fronick.

Author information

Authors and Affiliations

  1. Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, 16802, Pennsylvania, USA
    Yuannian Jiao, Hong Ma & Claude W. dePamphilis
  2. Department of Biology, Institute of Molecular Evolutionary Genetics, and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, 16802, Pennsylvania, USA
    Yuannian Jiao, Norman J. Wickett, Lena Landherr, Paula E. Ralph, Yi Hu, Hong Ma & Claude W. dePamphilis
  3. Department of Plant Biology, University of Georgia, Athens, 30602, Georgia, USA
    Saravanaraj Ayyampalayam & Jim Leebens-Mack
  4. Department of Biology, University of Florida, Gainesville, 32611, Florida, USA
    André S. Chanderbali & Douglas E. Soltis
  5. Center for Comparative Genomics, Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, 16802, Pennsylvania, USA
    Lynn P. Tomsho & Stephan C. Schuster
  6. Department of Genetics and Biochemistry, Clemson University, Clemson, 29634, South Carolina, USA
    Haiying Liang
  7. Florida Museum of Natural History, University of Florida, Gainesville, 32611, Florida, USA
    Pamela S. Soltis
  8. The Genome Center at Washington University, Saint Louis, 63108, Missouri, USA
    Sandra W. Clifton
  9. Department of Forestry, Wildlife & Fisheries, Institute of Agriculture, The University of Tennessee, Knoxville, 37996, Tennessee, USA
    Scott E. Schlarbaum
  10. State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Plant Biology, Center for Evolutionary Biology, Fudan University, Shanghai, 200433, China
    Hong Ma
  11. Institute of Biomedical Sciences, Fudan University, Shanghai, 200433, China
    Hong Ma

Authors

  1. Yuannian Jiao
    You can also search for this author inPubMed Google Scholar
  2. Norman J. Wickett
    You can also search for this author inPubMed Google Scholar
  3. Saravanaraj Ayyampalayam
    You can also search for this author inPubMed Google Scholar
  4. André S. Chanderbali
    You can also search for this author inPubMed Google Scholar
  5. Lena Landherr
    You can also search for this author inPubMed Google Scholar
  6. Paula E. Ralph
    You can also search for this author inPubMed Google Scholar
  7. Lynn P. Tomsho
    You can also search for this author inPubMed Google Scholar
  8. Yi Hu
    You can also search for this author inPubMed Google Scholar
  9. Haiying Liang
    You can also search for this author inPubMed Google Scholar
  10. Pamela S. Soltis
    You can also search for this author inPubMed Google Scholar
  11. Douglas E. Soltis
    You can also search for this author inPubMed Google Scholar
  12. Sandra W. Clifton
    You can also search for this author inPubMed Google Scholar
  13. Scott E. Schlarbaum
    You can also search for this author inPubMed Google Scholar
  14. Stephan C. Schuster
    You can also search for this author inPubMed Google Scholar
  15. Hong Ma
    You can also search for this author inPubMed Google Scholar
  16. Jim Leebens-Mack
    You can also search for this author inPubMed Google Scholar
  17. Claude W. dePamphilis
    You can also search for this author inPubMed Google Scholar

Contributions

Y.J. and C.W.d. designed the study and Y.J. performed the principal data analyses. A.S.C., L.L., P.E.R., Y.H., S.E.S. and H.L. prepared tissues, RNAs, and/or libraries. S.W.C., L.P.T. and S.C.S. generated sequence data. S.A. and J.L.-M. performed the Ancestral Angiosperm Genome Project transcriptome assemblies and MAGIC database construction. Y.J. and C.W.d. drafted the manuscript, and N.J.W., A.S.C., L.L. P.E.R., P.S.S., D.E.S., H.M. and J.L-M. contributed to the planning and discussion of the research and the editing of the manuscript. All authors contributed to and approved the final manuscript.

Corresponding author

Correspondence toClaude W. dePamphilis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Alignments and phylogenetic trees have been deposited in Dryad with package identifier doi:10.5061/dryad.8546.

Supplementary information

Supplementary Information 1

The file contains a Supplementary Discussion, Supplementary References, Supplementary Tables 1-5 and Supplementary Figures 1-8 with legends. (PDF 2117 kb)

Supplementary Table 1

Additional File 1 displays a list of 799 orthogroups with Monocot + Eudicot duplication. (XLS 1635 kb)

Supplementary Table 2

Additional File 2 displays the number of ancient duplications found in orthogroups in all four analyses. (XLS 124 kb)

Supplementary Table 3

Additional File 3 displays data on significant enrichment of GO-SLIM term for the orthogroups with ancient duplication measured by Fisher’s exact test followed by multiple testing corrections. (XLS 27 kb)

Supplementary Information 2

Additional File 4 shows plot of the genomic positions of paralogous pairs of Vitis vinifera genes that arose from duplications prior to the divergence of monocots and eudicots. (PDF 11308 kb)

PowerPoint slides

Rights and permissions

About this article

Cite this article

Jiao, Y., Wickett, N., Ayyampalayam, S. et al. Ancestral polyploidy in seed plants and angiosperms.Nature 473, 97–100 (2011). https://doi.org/10.1038/nature09916

Download citation