Single-molecule fluorescence reveals sequence-specific misfolding in multidomain proteins (original) (raw)

References

  1. Gregersen, N., Bross, P., Vang, S. & Christensen, J. H. Protein misfolding and human disease. Annu. Rev. Genomics Hum. Genet. 7, 103–124 (2006)
    Article CAS Google Scholar
  2. Jaenicke, R. & Seckler, R. Protein misassembly in vitro . Adv. Protein Chem. 50, 1–59 (1997)
    Article CAS Google Scholar
  3. Wright, C. F., Teichmann, S. A., Clarke, J. & Dobson, C. M. The importance of sequence diversity in the aggregation and evolution of proteins. Nature 438, 878–881 (2005)
    Article ADS CAS Google Scholar
  4. Joo, C., Balci, H., Ishitsuka, Y., Buranachai, C. & Ha, T. Advances in single-molecule fluorescence methods for molecular biology. Annu. Rev. Biochem. 77, 51–76 (2008)
    Article CAS Google Scholar
  5. Schuler, B. & Eaton, W. A. Protein folding studied by single-molecule FRET. Curr. Opin. Struct. Biol. 18, 16–26 (2008)
    Article CAS Google Scholar
  6. Fedorov, A. N. & Baldwin, T. O. Cotranslational protein folding. J. Biol. Chem. 272, 32715–32718 (1997)
    Article CAS Google Scholar
  7. Li, H. et al. Reverse engineering of the giant muscle protein titin. Nature 418, 998–1002 (2002)
    Article ADS CAS Google Scholar
  8. Borgia, A., Williams, P. M. & Clarke, J. Single-molecule studies of protein folding. Annu. Rev. Biochem. 77, 101–125 (2008)
    Article CAS Google Scholar
  9. Oberhauser, A. F., Marszalek, P. E., Carrion-Vasquez, M. & Fernandez, J. M. Single protein misfolding events captured by atomic force microscopy. Nature Struct. Biol. 6, 1025–1028 (1999)
    Article CAS Google Scholar
  10. Stryer, L. Fluorescence energy transfer as a spectroscopic ruler. Annu. Rev. Biochem. 47, 819–846 (1978)
    Article CAS Google Scholar
  11. Gambin, Y. et al. Direct single-molecule observation of a protein living in two opposed native structures. Proc. Natl Acad. Sci. USA 106 10153–10158 (2009) CrossRef
    Article ADS CAS Google Scholar
  12. Fowler, S. B. & Clarke, J. Mapping the folding pathway of an immunoglobulin domain: structural detail from phi value analysis and movement of the transition state. Structure 9, 355–366 (2001)
    Article CAS Google Scholar
  13. Hofmann, H. et al. Single-molecule spectroscopy of protein folding in a chaperonin cage. Proc. Natl Acad. Sci. USA 107, 11793–11798 (2010)
    Article ADS CAS Google Scholar
  14. Ivarsson, Y., Travaglini-Allocatelli, C., Brunori, M. & Gianni, S. Folding and misfolding in a naturally occurring circularly permuted PDZ domain. J. Biol. Chem. 283, 8954–8960 (2008)
    Article CAS Google Scholar
  15. Gianni, S. et al. Structural characterization of a misfolded intermediate populated during the folding process of a PDZ domain. Nature Struct. Mol. Biol. 17, 1431–1437 (2010)
    Article CAS Google Scholar
  16. Korzhnev, D. M., Religa, T. L., Banachewicz, W., Fersht, A. R. & Kay, L. E. A transient and low-populated protein-folding intermediate at atomic resolution. Science 329, 1312–1316 (2010)
    Article ADS CAS Google Scholar
  17. Capaldi, A. P., Kleanthous, C. & Radford, S. E. Im7 folding mechanism: misfolding on a path to the native state. Nature Struct. Biol. 9, 209–216 (2002)
    CAS PubMed Google Scholar
  18. Yang, S. et al. Domain swapping is a consequence of minimal frustration. Proc. Natl Acad. Sci. USA 101, 13786–13791 (2004)
    Article ADS CAS Google Scholar
  19. Arora, P., Hammes, G. G. & Oas, T. G. Folding mechanism of a multiple independently-folding domain protein: double B domain of protein A. Biochemistry 45, 12312–12324 (2006)
    Article CAS Google Scholar
  20. Jaenicke, R. Folding and association of proteins. Prog. Biophys. Mol. Biol. 49, 117–237 (1987)
    Article CAS Google Scholar
  21. Straub, J. E. & Thirumalai, D. Principles governing oligomer formation in amyloidogenic peptides. Curr. Opin. Struct. Biol. 20, 187–195 (2010)
    Article CAS Google Scholar
  22. Bennett, M. J., Sawaya, M. R. & Eisenberg, D. Deposition diseases and 3D domain swapping. Structure 14, 811–824 (2006)
    Article CAS Google Scholar
  23. Mitraki, A. Protein aggregation from inclusion bodies to amyloid and biomaterials. Adv. Protein Chem. Struct. Biol. 79, 89–125 (2010)
    Article CAS Google Scholar
  24. Borgia, A., Steward, A. & Clarke, J. An effective strategy for the design of proteins with enhanced mechanical stability. Angew. Chem. Int. Ed. 47, 6900–6903 (2008)
    Article CAS Google Scholar
  25. Balamurali, M. M. et al. Recombination of protein fragments: a promising approach toward engineering proteins with novel nanomechanical properties. Protein Sci. 17, 1815–1826 (2008)
    Article CAS Google Scholar
  26. Lu, H., Isralewitz, B., Krammer, A., Vogel, V. & Schulten, K. Unfolding of titin immunoglobulin domains by steered molecular dynamics simulation. Biophys. J. 75, 662–671 (1998)
    Article ADS CAS Google Scholar
  27. Brooks, B. R. et al. CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 4, 187–217 (1983)
    Article CAS Google Scholar
  28. Dahan, M. et al. Ratiometric measurement and identification of single diffusing molecules. Chem. Phys. 247, 85–106 (1999)
    Article CAS Google Scholar
  29. Scott, K. A., Steward, A., Fowler, S. B. & Clarke, J. Titin; a multidomain protein that behaves as the sum of its parts. J. Mol. Biol. 315, 819–829 (2002)
    Article CAS Google Scholar
  30. Steward, A., Toca-Herrera, J. L. & Clarke, J. Versatile cloning system for construction of multimeric proteins for use in atomic force microscopy. Protein Sci. 11, 2179–2183 (2002)
    Article CAS Google Scholar
  31. Schuler, B., Lipman, E. A. & Eaton, W. A. Probing the free-energy surface for protein folding with single-molecule fluorescence spectroscopy. Nature 419, 743–747 (2002)
    Article ADS CAS Google Scholar
  32. Nettels, D. et al. Single-molecule spectroscopy of the temperature-induced collapse of unfolded proteins. Proc. Natl Acad. Sci. USA 106, 20740–20745 (2009)
    Article ADS CAS Google Scholar
  33. Hillger, F., Nettels, D., Dorsch, S. & Schuler, B. Detection and analysis of protein aggregation with confocal single molecule fluorescence spectroscopy. J. Fluoresc. 17, 759–765 (2007)
    Article CAS Google Scholar
  34. Schuler, B. Application of single molecule Förster resonance energy transfer to protein folding. Protein Folding Protocols (eds Bai, Y. & Nussinov, R.) 115–138 (Humana Press, 2007)
  35. Hoffmann, A. et al. Mapping protein collapse with single-molecule fluorescence and kinetic synchrotron radiation circular dichroism spectroscopy. Proc. Natl Acad. Sci. USA 104, 105–110 (2007)
    Article ADS CAS Google Scholar
  36. Improta, S., Politou, A. S. & Pastore, A. Immunoglobulin-like modules from titin I-band: extensible components of muscle elasticity. Structure 4, 323–337 (1996)
    Article CAS Google Scholar
  37. Karanicolas, J. & Brooks, C. L., III Improved Go-like models demonstrate the robustness of protein folding mechanisms towards non-native interactions. J. Mol. Biol. 334, 309–325 (2003)
    Article CAS Google Scholar

Download references