Single-molecule fluorescence reveals sequence-specific misfolding in multidomain proteins (original) (raw)
References
Gregersen, N., Bross, P., Vang, S. & Christensen, J. H. Protein misfolding and human disease. Annu. Rev. Genomics Hum. Genet.7, 103–124 (2006) ArticleCAS Google Scholar
Jaenicke, R. & Seckler, R. Protein misassembly in vitro . Adv. Protein Chem.50, 1–59 (1997) ArticleCAS Google Scholar
Wright, C. F., Teichmann, S. A., Clarke, J. & Dobson, C. M. The importance of sequence diversity in the aggregation and evolution of proteins. Nature438, 878–881 (2005) ArticleADSCAS Google Scholar
Joo, C., Balci, H., Ishitsuka, Y., Buranachai, C. & Ha, T. Advances in single-molecule fluorescence methods for molecular biology. Annu. Rev. Biochem.77, 51–76 (2008) ArticleCAS Google Scholar
Schuler, B. & Eaton, W. A. Protein folding studied by single-molecule FRET. Curr. Opin. Struct. Biol.18, 16–26 (2008) ArticleCAS Google Scholar
Fedorov, A. N. & Baldwin, T. O. Cotranslational protein folding. J. Biol. Chem.272, 32715–32718 (1997) ArticleCAS Google Scholar
Li, H. et al. Reverse engineering of the giant muscle protein titin. Nature418, 998–1002 (2002) ArticleADSCAS Google Scholar
Borgia, A., Williams, P. M. & Clarke, J. Single-molecule studies of protein folding. Annu. Rev. Biochem.77, 101–125 (2008) ArticleCAS Google Scholar
Oberhauser, A. F., Marszalek, P. E., Carrion-Vasquez, M. & Fernandez, J. M. Single protein misfolding events captured by atomic force microscopy. Nature Struct. Biol.6, 1025–1028 (1999) ArticleCAS Google Scholar
Stryer, L. Fluorescence energy transfer as a spectroscopic ruler. Annu. Rev. Biochem.47, 819–846 (1978) ArticleCAS Google Scholar
Gambin, Y. et al. Direct single-molecule observation of a protein living in two opposed native structures. Proc. Natl Acad. Sci. USA106 10153–10158 (2009) CrossRef ArticleADSCAS Google Scholar
Fowler, S. B. & Clarke, J. Mapping the folding pathway of an immunoglobulin domain: structural detail from phi value analysis and movement of the transition state. Structure9, 355–366 (2001) ArticleCAS Google Scholar
Hofmann, H. et al. Single-molecule spectroscopy of protein folding in a chaperonin cage. Proc. Natl Acad. Sci. USA107, 11793–11798 (2010) ArticleADSCAS Google Scholar
Ivarsson, Y., Travaglini-Allocatelli, C., Brunori, M. & Gianni, S. Folding and misfolding in a naturally occurring circularly permuted PDZ domain. J. Biol. Chem.283, 8954–8960 (2008) ArticleCAS Google Scholar
Gianni, S. et al. Structural characterization of a misfolded intermediate populated during the folding process of a PDZ domain. Nature Struct. Mol. Biol.17, 1431–1437 (2010) ArticleCAS Google Scholar
Korzhnev, D. M., Religa, T. L., Banachewicz, W., Fersht, A. R. & Kay, L. E. A transient and low-populated protein-folding intermediate at atomic resolution. Science329, 1312–1316 (2010) ArticleADSCAS Google Scholar
Capaldi, A. P., Kleanthous, C. & Radford, S. E. Im7 folding mechanism: misfolding on a path to the native state. Nature Struct. Biol.9, 209–216 (2002) CASPubMed Google Scholar
Yang, S. et al. Domain swapping is a consequence of minimal frustration. Proc. Natl Acad. Sci. USA101, 13786–13791 (2004) ArticleADSCAS Google Scholar
Arora, P., Hammes, G. G. & Oas, T. G. Folding mechanism of a multiple independently-folding domain protein: double B domain of protein A. Biochemistry45, 12312–12324 (2006) ArticleCAS Google Scholar
Jaenicke, R. Folding and association of proteins. Prog. Biophys. Mol. Biol.49, 117–237 (1987) ArticleCAS Google Scholar
Straub, J. E. & Thirumalai, D. Principles governing oligomer formation in amyloidogenic peptides. Curr. Opin. Struct. Biol.20, 187–195 (2010) ArticleCAS Google Scholar
Bennett, M. J., Sawaya, M. R. & Eisenberg, D. Deposition diseases and 3D domain swapping. Structure14, 811–824 (2006) ArticleCAS Google Scholar
Mitraki, A. Protein aggregation from inclusion bodies to amyloid and biomaterials. Adv. Protein Chem. Struct. Biol.79, 89–125 (2010) ArticleCAS Google Scholar
Borgia, A., Steward, A. & Clarke, J. An effective strategy for the design of proteins with enhanced mechanical stability. Angew. Chem. Int. Ed.47, 6900–6903 (2008) ArticleCAS Google Scholar
Balamurali, M. M. et al. Recombination of protein fragments: a promising approach toward engineering proteins with novel nanomechanical properties. Protein Sci.17, 1815–1826 (2008) ArticleCAS Google Scholar
Lu, H., Isralewitz, B., Krammer, A., Vogel, V. & Schulten, K. Unfolding of titin immunoglobulin domains by steered molecular dynamics simulation. Biophys. J.75, 662–671 (1998) ArticleADSCAS Google Scholar
Brooks, B. R. et al. CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem.4, 187–217 (1983) ArticleCAS Google Scholar
Dahan, M. et al. Ratiometric measurement and identification of single diffusing molecules. Chem. Phys.247, 85–106 (1999) ArticleCAS Google Scholar
Scott, K. A., Steward, A., Fowler, S. B. & Clarke, J. Titin; a multidomain protein that behaves as the sum of its parts. J. Mol. Biol.315, 819–829 (2002) ArticleCAS Google Scholar
Steward, A., Toca-Herrera, J. L. & Clarke, J. Versatile cloning system for construction of multimeric proteins for use in atomic force microscopy. Protein Sci.11, 2179–2183 (2002) ArticleCAS Google Scholar
Schuler, B., Lipman, E. A. & Eaton, W. A. Probing the free-energy surface for protein folding with single-molecule fluorescence spectroscopy. Nature419, 743–747 (2002) ArticleADSCAS Google Scholar
Nettels, D. et al. Single-molecule spectroscopy of the temperature-induced collapse of unfolded proteins. Proc. Natl Acad. Sci. USA106, 20740–20745 (2009) ArticleADSCAS Google Scholar
Hillger, F., Nettels, D., Dorsch, S. & Schuler, B. Detection and analysis of protein aggregation with confocal single molecule fluorescence spectroscopy. J. Fluoresc.17, 759–765 (2007) ArticleCAS Google Scholar
Schuler, B. Application of single molecule Förster resonance energy transfer to protein folding. Protein Folding Protocols (eds Bai, Y. & Nussinov, R.) 115–138 (Humana Press, 2007)
Hoffmann, A. et al. Mapping protein collapse with single-molecule fluorescence and kinetic synchrotron radiation circular dichroism spectroscopy. Proc. Natl Acad. Sci. USA104, 105–110 (2007) ArticleADSCAS Google Scholar
Improta, S., Politou, A. S. & Pastore, A. Immunoglobulin-like modules from titin I-band: extensible components of muscle elasticity. Structure4, 323–337 (1996) ArticleCAS Google Scholar
Karanicolas, J. & Brooks, C. L., III Improved Go-like models demonstrate the robustness of protein folding mechanisms towards non-native interactions. J. Mol. Biol.334, 309–325 (2003) ArticleCAS Google Scholar