Type VI secretion delivers bacteriolytic effectors to target cells (original) (raw)

References

  1. Hayes, C. S., Aoki, S. K. & Low, D. A. Bacterial contact-dependent delivery systems. Annu. Rev. Genet. 44, 71–90 (2010)
    Article CAS Google Scholar
  2. Hibbing, M. E., Fuqua, C., Parsek, M. R. & Peterson, S. B. Bacterial competition: surviving and thriving in the microbial jungle. Nature Rev. Microbiol. 8, 15–25 (2010)
    Article CAS Google Scholar
  3. Gründling, A. & Schneewind, O. Cross-linked peptidoglycan mediates lysostaphin binding to the cell wall envelope of Staphylococcus aureus . J. Bacteriol. 188, 2463–2472 (2006)
    Article Google Scholar
  4. Vollmer, W., Pilsl, H., Hantke, K., Höltje, J. V. & Braun, V. Pesticin displays muramidase activity. J. Bacteriol. 179, 1580–1583 (1997)
    Article CAS Google Scholar
  5. Brötz, H., Bierbaum, G., Markus, A., Molitor, E. & Sahl, H. G. Mode of action of the lantibiotic mersacidin: inhibition of peptidoglycan biosynthesis via a novel mechanism? Antimicrob. Agents Chemother. 39, 714–719 (1995)
    Article Google Scholar
  6. Riley, M. A. & Wertz, J. E. Bacteriocins: evolution, ecology, and application. Annu. Rev. Microbiol. 56, 117–137 (2002)
    Article CAS Google Scholar
  7. Hood, R. D. et al. A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host Microbe 7, 25–37 (2010)
    Article CAS Google Scholar
  8. Schwarz, S., Hood, R. D. & Mougous, J. D. What is type VI secretion doing in all those bugs? Trends Microbiol. 18, 531–537 (2010)
    Article CAS Google Scholar
  9. Cascales, E. The type VI secretion toolkit. EMBO Rep. 9, 735–741 (2008)
    Article CAS Google Scholar
  10. Boyer, F., Fichant, G., Berthod, J., Vandenbrouck, Y. & Attree, I. Dissecting the bacterial type VI secretion system by a genome wide in silico analysis: what can be learned from available microbial genomic resources? BMC Genomics 10, 104 (2009)
    Article Google Scholar
  11. Ballister, E. R., Lai, A. H., Zuckermann, R. N., Cheng, Y. & Mougous, J. D. In vitro self-assembly of tailorable nanotubes from a simple protein building block. Proc. Natl Acad. Sci. USA 105, 3733–3738 (2008)
    Article ADS CAS Google Scholar
  12. Leiman, P. G. et al. Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin. Proc. Natl Acad. Sci. USA 106, 4154–4159 (2009)
    Article ADS CAS Google Scholar
  13. Mougous, J. D. et al. A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science 312, 1526–1530 (2006)
    Article ADS CAS Google Scholar
  14. Kanamaru, S. Structural similarity of tailed phages and pathogenic bacterial secretion systems. Proc. Natl Acad. Sci. USA 106, 4067–4068 (2009)
    Article ADS CAS Google Scholar
  15. Christie, P. J., Atmakuri, K., Krishnamoorthy, V., Jakubowski, S. & Cascales, E. Biogenesis, architecture, and function of bacterial type IV secretion systems. Annu. Rev. Microbiol. 59, 451–485 (2005)
    Article CAS Google Scholar
  16. Kelley, L. A. & Sternberg, M. J. Protein structure prediction on the Web: a case study using the Phyre server. Nature Protocols 4, 363–371 (2009)
    Article CAS Google Scholar
  17. Anantharaman, V. & Aravind, L. Evolutionary history, structural features and biochemical diversity of the NlpC/P60 superfamily of enzymes. Genome Biol. 4, R11 (2003)
    Article Google Scholar
  18. Scheurwater, E., Reid, C. W. & Clarke, A. J. Lytic transglycosylases: bacterial space-making autolysins. Int. J. Biochem. Cell Biol. 40, 586–591 (2008)
    Article CAS Google Scholar
  19. Vollmer, W., Joris, B., Charlier, P. & Foster, S. Bacterial peptidoglycan (murein) hydrolases. FEMS Microbiol. Rev. 32, 259–286 (2008)
    Article CAS Google Scholar
  20. Gerdes, K., Christensen, S. K. & Lobner-Olesen, A. Prokaryotic toxin-antitoxin stress response loci. Nature Rev. Microbiol. 3, 371–382 (2005)
    Article CAS Google Scholar
  21. Hall-Stoodley, L., Costerton, J. W. & Stoodley, P. Bacterial biofilms: from the natural environment to infectious diseases. Nature Rev. Microbiol. 2, 95–108 (2004)
    Article CAS Google Scholar
  22. Schwarz, S. et al. Burkholderia type VI secretion systems have distinct roles in eukaryotic and bacterial cell interactions. PLoS Pathog. 6, (2010)
  23. Mortensen, J. E., Fisher, M. C. & LiPuma, J. J. Recovery of Pseudomonas cepacia and other Pseudomonas species from the environment. Infect. Control Hosp. Epidemiol. 16, 30–32 (1995)
    Article CAS Google Scholar
  24. Nelson, K. E. et al. Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ. Microbiol. 4, 799–808 (2002)
    Article CAS Google Scholar
  25. Pukatzki, S., Ma, A. T., Revel, A. T., Sturtevant, D. & Mekalanos, J. J. Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin. Proc. Natl Acad. Sci. USA 104, 15508–15513 (2007)
    Article ADS CAS Google Scholar
  26. Rakhuba, D. V., Kolomiets, E. I., Dey, E. S. & Novik, G. I. Bacteriophage receptors, mechanisms of phage adsorption and penetration into host cell. Pol. J. Microbiol. 59, 145–155 (2010)
    CAS PubMed Google Scholar
  27. Nelson, K. E. et al. A catalog of reference genomes from the human microbiome. Science 328, 994–999 (2010)
    Article CAS Google Scholar
  28. Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010)
    Article CAS Google Scholar
  29. Brook, I. Bacterial interference. Crit. Rev. Microbiol. 25, 155–172 (1999)
    Article CAS Google Scholar
  30. Iwase, T. et al. Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature 465, 346–349 (2010)
    Article ADS CAS Google Scholar
  31. Reid, G., Howard, J. & Gan, B. S. Can bacterial interference prevent infection? Trends Microbiol. 9, 424–428 (2001)
    Article CAS Google Scholar
  32. Gjødsbøl, K. et al. Multiple bacterial species reside in chronic wounds: a longitudinal study. Int. Wound J. 3, 225–231 (2006)
    Article Google Scholar
  33. Stover, C. K. et al. Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature 406, 959–964 (2000)
    Article ADS CAS Google Scholar
  34. Bui, N. K. et al. The peptidoglycan sacculus of Myxococcus xanthus has unusual structural features and is degraded during glycerol-induced myxospore development. J. Bacteriol. 191, 494–505 (2009)
    Article CAS Google Scholar
  35. Lei, S. P., Lin, H. C., Wang, S. S., Callaway, J. & Wilcox, G. Characterization of the Erwinia carotovora pelB gene and its product pectate lyase. J. Bacteriol. 169, 4379–4383 (1987)
    Article CAS Google Scholar
  36. Goodman, A. L. et al. A signaling network reciprocally regulates genes associated with acute infection and chronic persistence in Pseudomonas aeruginosa . Dev. Cell 7, 745–754 (2004)
    Article CAS Google Scholar
  37. Imperi, F. et al. Analysis of the periplasmic proteome of Pseudomonas aeruginosa, a metabolically versatile opportunistic pathogen. Proteomics 9, 1901–1915 (2009)
    Article CAS Google Scholar
  38. Cardona, S. T. & Valvano, M. A. An expression vector containing a rhamnose-inducible promoter provides tightly regulated gene expression in Burkholderia cenocepacia . Plasmid 54, 219–228 (2005)
    Article CAS Google Scholar
  39. Hsu, F., Schwarz, S. & Mougous, J. D. TagR promotes PpkA-catalysed type VI secretion activation in Pseudomonas aeruginosa . Mol. Microbiol. 72, 1111–1125 (2009)
    Article CAS Google Scholar
  40. Rietsch, A., Vallet-Gely, I., Dove, S. L. & Mekalanos, J. J. ExsE, a secreted regulator of type III secretion genes in Pseudomonas aeruginosa . Proc. Natl Acad. Sci. USA 102, 8006–8011 (2005)
    Article ADS CAS Google Scholar
  41. Horton, R. M. et al. Gene splicing by overlap extension. Methods Enzymol. 217, 270–279 (1993)
    Article CAS Google Scholar
  42. Wood, P. M. Periplasmic location of the terminal reductase in nitrite respiration. FEBS Lett. 92, 214–218 (1978)
    Article CAS Google Scholar
  43. Liu, J. & Walsh, C. T. Peptidyl-prolyl cis-trans-isomerase from Escherichia coli: a periplasmic homolog of cyclophilin that is not inhibited by cyclosporin A. Proc. Natl Acad. Sci. USA 87, 4028–4032 (1990)
    Article ADS CAS Google Scholar
  44. Mougous, J. D. et al. Identification, function and structure of the mycobacterial sulfotransferase that initiates sulfolipid-1 biosynthesis. Nature Struct. Mol. Biol. 11, 721–729 (2004)
    Article CAS Google Scholar
  45. Armougom, F. et al. Expresso: automatic incorporation of structural information in multiple sequence alignments using 3D-Coffee. Nucleic Acids Res. 34, W604–W608 (2006)
    Article CAS Google Scholar
  46. Finn, R. D. et al. The Pfam protein families database. Nucleic Acids Res. 38, D211–D222 (2010)
    Article CAS Google Scholar
  47. Glauner, B. Separation and quantification of muropeptides with high-performance liquid chromatography. Anal. Biochem. 172, 451–464 (1988)
    Article CAS Google Scholar
  48. Watt, S. R. & Clarke, A. J. Role of autolysins in the EDTA-induced lysis of Pseudomonas aeruginosa . FEMS Microbiol. Lett. 124, 113–119 (1994)
    Article CAS Google Scholar

Download references