α-Synuclein occurs physiologically as a helically folded tetramer that resists aggregation (original) (raw)
References
Obeso, J. A. et al. Missing pieces in the Parkinson’s disease puzzle. Nature Med.16, 653–661 (2010) ArticleCAS Google Scholar
Gupta, A., Dawson, V. L. & Dawson, T. M. What causes cell death in Parkinson’s disease? Ann. Neurol.64, S3–S15 (2008) ArticleCAS Google Scholar
Winklhofer, K. F., Tatzelt, J. & Haass, C. The two faces of protein misfolding: gain- and loss-of-function in neurodegenerative diseases. EMBO J.27, 336–349 (2008) ArticleCAS Google Scholar
Tong, J. et al. Brain α-synuclein accumulation in multiple system atrophy, Parkinson’s disease and progressive supranuclear palsy: a comparative investigation. Brain133, 172–188 (2010) Article Google Scholar
Weinreb, P. H., Zhen, W., Poon, A. W., Conway, K. A. & Lansbury, P. T. J. NACP, a protein implicated in Alzheimer’s disease and learning, is natively unfolded. Biochemistry35, 13709–13715 (1996) ArticleCAS Google Scholar
Davidson, W. S., Jonas, A., Clayton, D. F. & George, J. M. Stabilization of α-synuclein secondary structure upon binding to synthetic membranes. J. Biol. Chem.273, 9443–9449 (1998) ArticleCAS Google Scholar
DeTure, M. et al. Missense tau mutations identified in FTDP-17 have a small effect on tau-microtubule interactions. Brain Res.853, 5–14 (2000) ArticleCAS Google Scholar
Scherzer, C. R. et al. GATA transcription factors directly regulate the Parkinson’s disease-linked gene α-synuclein. Proc. Natl Acad. Sci. USA105, 10907–10912 (2008) ArticleADSCAS Google Scholar
Wittig, I. & Schagger, H. Advantages and limitations of clear-native PAGE. Proteomics5, 4338–4346 (2005) ArticleCAS Google Scholar
Osenkowski, P. et al. Cryoelectron microscopy structure of purified •-secretase at 12 Å resolution. J. Mol. Biol.385, 642–652 (2009) ArticleCAS Google Scholar
Wall, J. S., Simon, M. N., Lin, B. Y. & Vinogradov, S. N. Mass mapping of large globin complexes by scanning transmission electron microscopy. Methods Enzymol.436, 487–501 (2008) ArticleCAS Google Scholar
Beyer, K. Mechanistic aspects of Parkinson’s disease: α-synuclein and the biomembrane. Cell Biochem. Biophys.47, 285–299 (2007) ArticleCAS Google Scholar
Chen, Y., Yang, J. T. & Martinez, H. M. Determination of the secondary structures of proteins by circular dichroism and optical rotatory dispersion. Biochemistry11, 4120–4131 (1972) ArticleCAS Google Scholar
Sharon, R. et al. α-Synuclein occurs in lipid-rich high molecular weight complexes, binds fatty acids, and shows homology to the fatty acid-binding proteins. Proc. Natl Acad. Sci. USA98, 9110–9115 (2001) ArticleADSCAS Google Scholar
Chen, P. S., Toribara, T. Y. & Warner, H. Microdetermination of phosphorus. Anal. Chem.28, 1756–1758 (1956) ArticleCAS Google Scholar
Ko, L. W., Ko, H. H., Lin, W. L., Kulathingal, J. G. & Yen, S. H. Aggregates assembled from overexpression of wild-type α-synuclein are not toxic to human neuronal cells. J. Neuropathol. Exp. Neurol.67, 1084–1096 (2008) ArticleCAS Google Scholar
McLean, P. J., Kawamata, H., Ribich, S. & Hyman, B. T. Membrane association and protein conformation of α-synuclein in intact neurons. Effect of Parkinson’s disease-linked mutations. J. Biol. Chem.275, 8812–8816 (2000) ArticleCAS Google Scholar
Smith, D. P. et al. Formation of a high affinity lipid-binding intermediate during the early aggregation phase of α-synuclein. Biochemistry47, 1425–1434 (2008) ArticleCAS Google Scholar
Tsika, E. et al. Distinct region-specific α-synuclein oligomers in A53T transgenic mice: implications for neurodegeneration. J. Neurosci.30, 3409–3418 (2010) ArticleCAS Google Scholar
Klucken, J., Outeiro, T. F., Nguyen, P., McLean, P. J. & Hyman, B. T. Detection of novel intracellular α-synuclein oligomeric species by fluorescence lifetime imaging. FASEB J.20, 2050–2057 (2006) ArticleCAS Google Scholar
Quintas, A., Saraiva, M. J. M. & Brito, R. M. M. The tetrameric protein transthyretin dissociates to a non-native monomer in solution. J. Biol. Chem.274, 32943–32949 (1999) ArticleCAS Google Scholar
Connelly, S., Choi, S., Johnson, S. M., Kelly, J. W. & Wilson, I. A. Structure-based design of kinetic stabilizers that ameliorate the transthyretin amyloidoses. Curr. Opin. Struct. Biol.20, 54–62 (2010) ArticleCAS Google Scholar
Lansbury, P. T. & Lashuel, H. A. A century-old debate on protein aggregation and neurodegeneration enters the clinic. Nature443, 774–779 (2006) ArticleADSCAS Google Scholar