α-Synuclein occurs physiologically as a helically folded tetramer that resists aggregation (original) (raw)

References

  1. Obeso, J. A. et al. Missing pieces in the Parkinson’s disease puzzle. Nature Med. 16, 653–661 (2010)
    Article CAS Google Scholar
  2. Gupta, A., Dawson, V. L. & Dawson, T. M. What causes cell death in Parkinson’s disease? Ann. Neurol. 64, S3–S15 (2008)
    Article CAS Google Scholar
  3. Winklhofer, K. F., Tatzelt, J. & Haass, C. The two faces of protein misfolding: gain- and loss-of-function in neurodegenerative diseases. EMBO J. 27, 336–349 (2008)
    Article CAS Google Scholar
  4. Tong, J. et al. Brain α-synuclein accumulation in multiple system atrophy, Parkinson’s disease and progressive supranuclear palsy: a comparative investigation. Brain 133, 172–188 (2010)
    Article Google Scholar
  5. Spillantini, M. G. et al. α-Synuclein in Lewy bodies. Nature 388, 839–840 (1997)
    Article ADS CAS Google Scholar
  6. Weinreb, P. H., Zhen, W., Poon, A. W., Conway, K. A. & Lansbury, P. T. J. NACP, a protein implicated in Alzheimer’s disease and learning, is natively unfolded. Biochemistry 35, 13709–13715 (1996)
    Article CAS Google Scholar
  7. Davidson, W. S., Jonas, A., Clayton, D. F. & George, J. M. Stabilization of α-synuclein secondary structure upon binding to synthetic membranes. J. Biol. Chem. 273, 9443–9449 (1998)
    Article CAS Google Scholar
  8. DeTure, M. et al. Missense tau mutations identified in FTDP-17 have a small effect on tau-microtubule interactions. Brain Res. 853, 5–14 (2000)
    Article CAS Google Scholar
  9. Scherzer, C. R. et al. GATA transcription factors directly regulate the Parkinson’s disease-linked gene α-synuclein. Proc. Natl Acad. Sci. USA 105, 10907–10912 (2008)
    Article ADS CAS Google Scholar
  10. Wittig, I. & Schagger, H. Advantages and limitations of clear-native PAGE. Proteomics 5, 4338–4346 (2005)
    Article CAS Google Scholar
  11. Osenkowski, P. et al. Cryoelectron microscopy structure of purified •-secretase at 12 Å resolution. J. Mol. Biol. 385, 642–652 (2009)
    Article CAS Google Scholar
  12. Wall, J. S., Simon, M. N., Lin, B. Y. & Vinogradov, S. N. Mass mapping of large globin complexes by scanning transmission electron microscopy. Methods Enzymol. 436, 487–501 (2008)
    Article CAS Google Scholar
  13. Beyer, K. Mechanistic aspects of Parkinson’s disease: α-synuclein and the biomembrane. Cell Biochem. Biophys. 47, 285–299 (2007)
    Article CAS Google Scholar
  14. Chen, Y., Yang, J. T. & Martinez, H. M. Determination of the secondary structures of proteins by circular dichroism and optical rotatory dispersion. Biochemistry 11, 4120–4131 (1972)
    Article CAS Google Scholar
  15. Sharon, R. et al. α-Synuclein occurs in lipid-rich high molecular weight complexes, binds fatty acids, and shows homology to the fatty acid-binding proteins. Proc. Natl Acad. Sci. USA 98, 9110–9115 (2001)
    Article ADS CAS Google Scholar
  16. Chen, P. S., Toribara, T. Y. & Warner, H. Microdetermination of phosphorus. Anal. Chem. 28, 1756–1758 (1956)
    Article CAS Google Scholar
  17. Ko, L. W., Ko, H. H., Lin, W. L., Kulathingal, J. G. & Yen, S. H. Aggregates assembled from overexpression of wild-type α-synuclein are not toxic to human neuronal cells. J. Neuropathol. Exp. Neurol. 67, 1084–1096 (2008)
    Article CAS Google Scholar
  18. McLean, P. J., Kawamata, H., Ribich, S. & Hyman, B. T. Membrane association and protein conformation of α-synuclein in intact neurons. Effect of Parkinson’s disease-linked mutations. J. Biol. Chem. 275, 8812–8816 (2000)
    Article CAS Google Scholar
  19. Smith, D. P. et al. Formation of a high affinity lipid-binding intermediate during the early aggregation phase of α-synuclein. Biochemistry 47, 1425–1434 (2008)
    Article CAS Google Scholar
  20. Tsika, E. et al. Distinct region-specific α-synuclein oligomers in A53T transgenic mice: implications for neurodegeneration. J. Neurosci. 30, 3409–3418 (2010)
    Article CAS Google Scholar
  21. Klucken, J., Outeiro, T. F., Nguyen, P., McLean, P. J. & Hyman, B. T. Detection of novel intracellular α-synuclein oligomeric species by fluorescence lifetime imaging. FASEB J. 20, 2050–2057 (2006)
    Article CAS Google Scholar
  22. Quintas, A., Saraiva, M. J. M. & Brito, R. M. M. The tetrameric protein transthyretin dissociates to a non-native monomer in solution. J. Biol. Chem. 274, 32943–32949 (1999)
    Article CAS Google Scholar
  23. Connelly, S., Choi, S., Johnson, S. M., Kelly, J. W. & Wilson, I. A. Structure-based design of kinetic stabilizers that ameliorate the transthyretin amyloidoses. Curr. Opin. Struct. Biol. 20, 54–62 (2010)
    Article CAS Google Scholar
  24. Lansbury, P. T. & Lashuel, H. A. A century-old debate on protein aggregation and neurodegeneration enters the clinic. Nature 443, 774–779 (2006)
    Article ADS CAS Google Scholar

Download references