Modular regulatory principles of large non-coding RNAs (original) (raw)
Warner, J. R., Soeiro, R., Birnboim, H. C., Girard, M. & Darnell, J. E. Rapidly labeled HeLa cell nuclear RNA. I. Identification by zone sedimentation of a heterogeneous fraction separate from ribosomal precursor RNA. J. Mol. Biol.19, 349–361 (1966). CASPubMed Google Scholar
Salditt-Georgieff, M., Harpold, M. M., Wilson, M. C. & Darnell, J. E., Jr. Large heterogeneous nuclear ribonucleic acid has three times as many 5′ caps as polyadenylic acid segments, and most caps do not enter polyribosomes. Mol. Cell. Biol.1, 179–187 (1981). This paper demonstrates an abundant class of RNA species that do not enter polyribosomes. CASPubMedPubMed Central Google Scholar
Weinberg, R. A. & Penman, S. Small molecular weight monodisperse nuclear RNA. J. Mol. Biol.38, 289–304 (1968). CASPubMed Google Scholar
Zieve, G. & Penman, S. Small RNA species of the HeLa cell: metabolism and subcellular localization. Cell8, 19–31 (1976). CASPubMed Google Scholar
Gesteland, R. F., Cech, T. & Atkins, J. F. The RNA World : The Nature of Modern RNA Suggests a Prebiotic RNA World. 3rd edn (Cold Spring Harbor Laboratory Press, 2006). Google Scholar
Eddy, S. R. Non-coding RNA genes and the modern RNA world. Nature Rev. Genet.2, 919–929 (2001). CASPubMed Google Scholar
Pachnis, V., Brannan, C. I. & Tilghman, S. M. The structure and expression of a novel gene activated in early mouse embryogenesis. EMBO J.7, 673–681 (1988). CASPubMedPubMed Central Google Scholar
Brannan, C. I., Dees, E. C., Ingram, R. S. & Tilghman, S. M. The product of the H19 gene may function as an RNA. Mol. Cell. Biol.10, 28–36 (1990). This paper was the first report of a large ncRNA showing that theH19transcript lacked conserved ORFs and did not make a protein productin vivo. CASPubMedPubMed Central Google Scholar
Brown, C. J. et al. A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome. Nature349, 38–44 (1991). ADSCASPubMed Google Scholar
Penny, G. D., Kay, G. F., Sheardown, S. A., Rastan, S. & Brockdorff, N. Requirement for Xist in X chromosome inactivation. Nature379, 131–137 (1996). ADSCASPubMed Google Scholar
Sleutels, F., Zwart, R. & Barlow, D. P. The non-coding Air RNA is required for silencing autosomal imprinted genes. Nature415, 810–813 (2002). ADSCASPubMed Google Scholar
Young, T. L., Matsuda, T. & Cepko, C. L. The noncoding RNA taurine upregulated gene 1 is required for differentiation of the murine retina. Curr. Biol.15, 501–512 (2005). CASPubMed Google Scholar
Willingham, A. T. et al. A strategy for probing the function of noncoding RNAs finds a repressor of NFAT. Science309, 1570–1573 (2005). ADSCASPubMed Google Scholar
Rinn, J. L. et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell129, 1311–1323 (2007). CASPubMedPubMed Central Google Scholar
Carninci, P. et al. The transcriptional landscape of the mammalian genome. Science309, 1559–1563 (2005). This paper describes the large-scale cDNA sequencing efforts in the mouse genome and reveals many thousands of non-coding transcripts. ADSCASPubMed Google Scholar
Birney, E. et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature447, 799–816 (2007). ADSCASPubMed Google Scholar
Bertone, P. et al. Global identification of human transcribed sequences with genome tiling arrays. Science306, 2242–2246 (2004). ADSCASPubMed Google Scholar
Kapranov, P. et al. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science316, 1484–1488 (2007). ADSCASPubMed Google Scholar
Kapranov, P. et al. Large-scale transcriptional activity in chromosomes 21 and 22. Science296, 916–919 (2002). ADSCASPubMed Google Scholar
Ebisuya, M., Yamamoto, T., Nakajima, M. & Nishida, E. Ripples from neighbouring transcription. Nature Cell Biol.10, 1106–1113 (2008). CASPubMed Google Scholar
Struhl, K. Transcriptional noise and the fidelity of initiation by RNA polymerase II. Nature Struct. Mol. Biol.14, 103–105 (2007). CAS Google Scholar
Guttman, M. et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature458, 223–227 (2009). This paper applied a chromatin signature to identify lincRNAs and used a guilt-by-association approach to classify their likely functions in diverse biological processes. ADSCASPubMedPubMed Central Google Scholar
Huarte, M. et al. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell142, 409–419 (2010). CASPubMedPubMed Central Google Scholar
Hung, T. et al. Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nature Genet.43, 621–629 (2011). CASPubMed Google Scholar
Wang, K. C. et al. A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature472, 120–124 (2011). ADSCASPubMedPubMed Central Google Scholar
Wilusz, J. E., Freier, S. M. & Spector, D. L. 3′ end processing of a long nuclear-retained noncoding RNA yields a tRNA-like cytoplasmic RNA. Cell135, 919–932 (2008). CASPubMedPubMed Central Google Scholar
Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods5, 621–628 (2008). CASPubMed Google Scholar
Guttman, M. et al. Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nature Biotechnol.28, 503–510 (2010). CAS Google Scholar
Cabili, M. N. et al. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev.25, 1915–1927 (2011). CASPubMedPubMed Central Google Scholar
Mercer, T. R., Dinger, M. E., Sunkin, S. M., Mehler, M. F. & Mattick, J. S. Specific expression of long noncoding RNAs in the mouse brain. Proc. Natl Acad. Sci. USA105, 716–721 (2008). ADSCASPubMedPubMed Central Google Scholar
De Santa, F. et al. A large fraction of extragenic RNA Pol II transcription sites overlap enhancers. PLoS Biol.8, e1000384 (2010). PubMedPubMed Central Google Scholar
Ravasi, T. et al. Experimental validation of the regulated expression of large numbers of non-coding RNAs from the mouse genome. Genome Res.16, 11–19 (2006). CASPubMedPubMed Central Google Scholar
Ponjavic, J., Ponting, C. P. & Lunter, G. Functionality or transcriptional noise? Evidence for selection within long noncoding RNAs. Genome Res.17, 556–565 (2007). CASPubMedPubMed Central Google Scholar
Taft, R. J. et al. Tiny RNAs associated with transcription start sites in animals. Nature Genet.41, 572–578 (2009). CASPubMed Google Scholar
Heintzman, N. D. et al. Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature459, 108–112 (2009). ADSCASPubMedPubMed Central Google Scholar
Mikkelsen, T. S. et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature448, 553–560 (2007). ADSCASPubMedPubMed Central Google Scholar
Khalil, A. M. et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc. Natl Acad. Sci. USA106, 11667–11672 (2009). ADSCASPubMedPubMed Central Google Scholar
Loewer, S. et al. Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nature Genet.42, 1113–1117 (2010). CASPubMed Google Scholar
Dinger, M. E., Pang, K. C., Mercer, T. R. & Mattick, J. S. Differentiating protein-coding and noncoding RNA: challenges and ambiguities. PLoS Comput. Biol.4, e1000176 (2008). ADSPubMedPubMed Central Google Scholar
Brockdorff, N. et al. The product of the mouse Xist gene is a 15 kb inactive X-specific transcript containing no conserved ORF and located in the nucleus. Cell71, 515–526 (1992). CASPubMed Google Scholar
Lin, M. F., Deoras, A. N., Rasmussen, M. D. & Kellis, M. Performance and scalability of discriminative metrics for comparative gene identification in 12 Drosophila genomes. PLoS Comput. Biol.4, e1000067 (2008). ADSMathSciNetPubMedPubMed Central Google Scholar
Lin, M. F., Jungreis, I. & Kellis, M. PhyloCSF: a comparative genomics method to distinguish protein coding and non-coding regions. Bioinformatics27, i275–i282 (2011). CASPubMedPubMed Central Google Scholar
Finn, R. D. et al. The Pfam protein families database. Nucleic Acids Res.38, D211–D222 (2010). CASPubMed Google Scholar
Ingolia, N. T., Lareau, L. F. & Weissman, J. S. Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell147, 789–802 (2011). CASPubMedPubMed Central Google Scholar
Galindo, M. I., Pueyo, J. I., Fouix, S., Bishop, S. A. & Couso, J. P. Peptides encoded by short ORFs control development and define a new eukaryotic gene family. PLoS Biol.5, e106 (2007). This paper demonstrates the existence of functional small peptides within a presumed 'non-coding' transcript through ORF conservation,in vivoprotein identification and functional analysis. PubMedPubMed Central Google Scholar
Kondo, T. et al. Small peptides switch the transcriptional activity of Shavenbaby during Drosophila embryogenesis. Science329, 336–339 (2010). ADSCASPubMed Google Scholar
Jiao, Y. & Meyerowitz, E. M. Cell-type specific analysis of translating RNAs in developing flowers reveals new levels of control. Mol. Syst. Biol.6, 419 (2010). PubMedPubMed Central Google Scholar
Li, Y. M. et al. The H19 transcript is associated with polysomes and may regulate IGF2 expression in trans. J. Biol. Chem.273, 28247–28252 (1998). CASPubMed Google Scholar
Yang, L. et al. ncRNA- and Pc2 methylation-dependent gene relocation between nuclear structures mediates gene activation programs. Cell147, 773–788 (2011). CASPubMedPubMed Central Google Scholar
Clamp, M. et al. Distinguishing protein-coding and noncoding genes in the human genome. Proc. Natl Acad. Sci. USA104, 19428–19433 (2007). ADSCASPubMedPubMed Central Google Scholar
Kastenmayer, J. P. et al. Functional genomics of genes with small open reading frames (sORFs) in S. cerevisiae. Genome Res.16, 365–373 (2006). CASPubMedPubMed Central Google Scholar
Hanada, K., Zhang, X., Borevitz, J. O., Li, W. H. & Shiu, S. H. A large number of novel coding small open reading frames in the intergenic regions of the Arabidopsis thaliana genome are transcribed and/or under purifying selection. Genome Res17, 632–640 (2007). CASPubMedPubMed Central Google Scholar
Tsai, M. C. et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science329, 689–693 (2010). This paper identified multiple protein-interaction domains within HOTAIR that together allowed it to carry out its function, which demonstrated that a large ncRNA can act as a molecular scaffold. ADSCASPubMedPubMed Central Google Scholar
Gupta, R. A. et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature464, 1071–1076 (2010). ADSCASPubMedPubMed Central Google Scholar
Zappulla, D. C. & Cech, T. R. Yeast telomerase RNA: a flexible scaffold for protein subunits. Proc. Natl Acad. Sci. USA101, 10024–10029 (2004). This paper demonstrated that telomerase RNA can bridge proteins by showing that protein interaction domains can be swapped and spacer regions deleted with minimal impact on the function of the RNA. ADSCASPubMedPubMed Central Google Scholar
Korostelev, A. & Noller, H. F. The ribosome in focus: new structures bring new insights. Trends Biochem. Sci.32, 434–441 (2007). CASPubMed Google Scholar
Ivanova, N. et al. Dissecting self-renewal in stem cells with RNA interference. Nature442, 533–538 (2006). ADSCASPubMed Google Scholar
Martens, J. A., Laprade, L. & Winston, F. Intergenic transcription is required to repress the Saccharomyces cerevisiae SER3 gene. Nature429, 571–574 (2004). ADSCASPubMed Google Scholar
Schmitt, S., Prestel, M. & Paro, R. Intergenic transcription through a Polycomb group response element counteracts silencing. Genes Dev.19, 697–708 (2005). CASPubMedPubMed Central Google Scholar
Lee, J. T. Lessons from X-chromosome inactivation: long ncRNA as guides and tethers to the epigenome. Genes Dev.23, 1831–1842 (2009). CASPubMedPubMed Central Google Scholar
Ponjavic, J., Oliver, P. L., Lunter, G. & Ponting, C. P. Genomic and transcriptional co-localization of protein-coding and long non-coding RNA pairs in the developing brain. PLoS Genet.5, e1000617 (2009). PubMedPubMed Central Google Scholar
Tian, D., Sun, S. & Lee, J. T. The long noncoding RNA, Jpx, is a molecular switch for X chromosome inactivation. Cell143, 390–403 (2010). CASPubMedPubMed Central Google Scholar
Koerner, M. V., Pauler, F. M., Huang, R. & Barlow, D. P. The function of non-coding RNAs in genomic imprinting. Development136, 1771–1783 (2009). CASPubMed Google Scholar
Pandey, R. R. et al. Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol. Cell32, 232–246 (2008). CASPubMed Google Scholar
Bertani, S., Sauer, S., Bolotin, E. & Sauer, F. The noncoding RNA Mistral activates Hoxa6 and Hoxa7 expression and stem cell differentiation by recruiting MLL1 to chromatin. Mol. Cell43, 1040–1046 (2011). CASPubMedPubMed Central Google Scholar
Feng, J. et al. The Evf-2 noncoding RNA is transcribed from the Dlx-5/6 ultraconserved region and functions as a Dlx-2 transcriptional coactivator. Genes Dev.20, 1470–1484 (2006). CASPubMedPubMed Central Google Scholar
Koziol, M. J. & Rinn, J. L. RNA traffic control of chromatin complexes. Curr. Opin. Genet. Dev.20, 142–148 (2010). CASPubMedPubMed Central Google Scholar
Maison, C. et al. Higher-order structure in pericentric heterochromatin involves a distinct pattern of histone modification and an RNA component. Nature Genet.30, 329–334 (2002). PubMed Google Scholar
Bernstein, E. et al. Mouse polycomb proteins bind differentially to methylated histone H3 and RNA and are enriched in facultative heterochromatin. Mol. Cell. Biol.26, 2560–2569 (2006). CASPubMedPubMed Central Google Scholar
Wutz, A., Rasmussen, T. P. & Jaenisch, R. Chromosomal silencing and localization are mediated by different domains of Xist RNA. Nature Genet.30, 167–174 (2002). This paper reported the generation of deletion mutants across theXistlocus and identified the discrete domains responsible for the silencing and localization roles of the RNA. CASPubMed Google Scholar
Chu, C., Qu, K., Zhong, F. L., Artandi, S. E. & Chang, H. Y. Genomic maps of long noncoding RNA occupancy reveal principles of RNA–chromatin interactions. Mol. Cell44, 667–678 (2011). CASPubMedPubMed Central Google Scholar
Zhao, J., Sun, B. K., Erwin, J. A., Song, J. J. & Lee, J. T. Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science322, 750–756 (2008). ADSCASPubMedPubMed Central Google Scholar
Plath, K., Mlynarczyk-Evans, S., Nusinow, D. A. & Panning, B. Xist RNA and the mechanism of X chromosome inactivation. Annu. Rev. Genet.36, 233–278 (2002). CASPubMed Google Scholar
Nagano, T. et al. The Air noncoding RNA epigenetically silences transcription by targeting G9a to chromatin. Science322, 1717–1720 (2008). ADSCASPubMed Google Scholar
Kaneko, S. et al. Phosphorylation of the PRC2 component Ezh2 is cell cycle-regulated and up-regulates its binding to ncRNA. Genes Dev.24, 2615–2620 (2010). CASPubMedPubMed Central Google Scholar
Wang, X. et al. Induced ncRNAs allosterically modify RNA-binding proteins in cis to inhibit transcription. Nature454, 126–130 (2008). ADSCASPubMedPubMed Central Google Scholar
Kino, T., Hurt, D. E., Ichijo, T., Nader, N. & Chrousos, G. P. Noncoding RNA Gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Sci. Signal3, ra8 (2010). PubMedPubMed Central Google Scholar
Salmena, L., Poliseno, L., Tay, Y., Kats, L. & Pandolfi, P. P. A ceRNA hypothesis: the Rosetta stone of a hidden RNA language? Cell146, 353–358 (2011). CASPubMedPubMed Central Google Scholar
Cesana, M. et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell147, 358–369 (2011). CASPubMedPubMed Central Google Scholar
Greider, C. W. & Blackburn, E. H. Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell43, 405–413 (1985). CASPubMed Google Scholar
Feng, J. et al. The RNA component of human telomerase. Science269, 1236–1241 (1995). ADSCASPubMed Google Scholar
Lingner, J. et al. Reverse transcriptase motifs in the catalytic subunit of telomerase. Science276, 561–567 (1997). CASPubMed Google Scholar
Hasegawa, Y., Brockdorff, N., Kawano, S., Tsutui, K. & Nakagawa, S. The matrix protein hnRNP U is required for chromosomal localization of Xist RNA. Dev. Cell19, 469–476 (2010). CASPubMed Google Scholar
Schmitz, K. M., Mayer, C., Postepska, A. & Grummt, I. Interaction of noncoding RNA with the rDNA promoter mediates recruitment of DNMT3b and silencing of rRNA genes. Genes Dev.24, 2264–2269 (2010). CASPubMedPubMed Central Google Scholar
Martianov, I., Ramadass, A., Serra Barros, A., Chow, N. & Akoulitchev, A. Repression of the human dihydrofolate reductase gene by a non-coding interfering transcript. Nature445, 666–670 (2007). CASPubMed Google Scholar