Small-molecule inhibitors of the AAA+ ATPase motor cytoplasmic dynein (original) (raw)

References

  1. White, S. R. & Lauring, B. AAA+ ATPases: achieving diversity of function with conserved machinery. Traffic 8, 1657–1667 (2007)
    Article CAS Google Scholar
  2. Scholey, J. M. Intraflagellar transport. Annu. Rev. Cell Dev. Biol. 19, 423–443 (2003)
    Article CAS Google Scholar
  3. Merdes, A., Ramyar, K., Vechio, J. D. & Cleveland, D. W. A complex of NuMA and cytoplasmic dynein is essential for mitotic spindle assembly. Cell 87, 447–458 (1996)
    Article CAS Google Scholar
  4. Akhmanova, A. & Hammer, J. A., III Linking molecular motors to membrane cargo. Curr. Opin. Cell Biol. 22, 479–487 (2010)
    Article CAS Google Scholar
  5. Chou, T. F. et al. Reversible inhibitor of p97, DBeQ, impairs both ubiquitin-dependent and autophagic protein clearance pathways. Proc. Natl Acad. Sci. USA 108, 4834–4839 (2011)
    Article ADS CAS Google Scholar
  6. Hyman, J. M. et al. Small-molecule inhibitors reveal multiple strategies for Hedgehog pathway blockade. Proc. Natl Acad. Sci. USA 106, 14132–14137 (2009)
    Article ADS CAS Google Scholar
  7. Jiang, J. & Hui, C.-C. Hedgehog signaling in development and cancer. Dev. Cell 15, 801–812 (2008)
    Article CAS Google Scholar
  8. Goetz, S. C. & Anderson, K. V. The primary cilium: a signalling centre during vertebrate development. Nature Rev. Genet. 11, 331–344 (2010)
    Article CAS Google Scholar
  9. Humke, E. W., Dorn, K. V., Milenkovic, L., Scott, M. P. & Rohatgi, R. The output of Hedgehog signaling is controlled by the dynamic association between Suppressor of Fused and the Gli proteins. Genes Dev. 24, 670–682 (2010)
    Article CAS Google Scholar
  10. Kim, J., Kato, M. & Beachy, P. A. Gli2 trafficking links Hedgehog-dependent activation of Smoothened in the primary cilium to transcriptional activation in the nucleus. Proc. Natl Acad. Sci. USA 106, 21666–21671 (2009)
    Article ADS CAS Google Scholar
  11. Huangfu, D. & Anderson, K. V. Cilia and Hedgehog responsiveness in the mouse. Proc. Natl Acad. Sci. USA 102, 11325–11330 (2005)
    Article ADS CAS Google Scholar
  12. Heald, R. et al. Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts. Nature 382, 420–425 (1996)
    Article ADS CAS Google Scholar
  13. Gaglio, T., Dionne, M. A. & Compton, D. A. Mitotic spindle poles are organized by structural and motor proteins in addition to centrosomes. J. Cell Biol. 138, 1055–1066 (1997)
    Article CAS Google Scholar
  14. Young, A., Dictenberg, J. B., Purohit, A., Tuft, R. & Doxsey, S. J. Cytoplasmic dynein-mediated assembly of pericentrin and gamma tubulin onto centrosomes. Mol. Biol. Cell 11, 2047–2056 (2000)
    Article CAS Google Scholar
  15. Varma, D., Monzo, P., Stehman, S. A. & Vallee, R. B. Direct role of dynein motor in stable kinetochore-microtubule attachment, orientation, and alignment. J. Cell Biol. 182, 1045–1054 (2008)
    Article CAS Google Scholar
  16. King, S. J., Brown, C. L., Maier, K. C., Quintyne, N. J. & Schroer, T. A. Analysis of the dynein-dynactin interaction in vitro and in vivo. Mol. Biol. Cell 14, 5089–5097 (2003)
    Article CAS Google Scholar
  17. Starr, D. A., Williams, B. C., Hays, T. S. & Goldberg, M. L. ZW10 helps recruit dynactin and dynein to the kinetochore. J. Cell Biol. 142, 763–774 (1998)
    Article CAS Google Scholar
  18. Yen, T. J., Li, G., Schaar, B. T., Szilak, I. & Cleveland, D. W. CENP-E is a putative kinetochore motor that accumulates just before mitosis. Nature 359, 536–539 (1992)
    Article ADS CAS Google Scholar
  19. Gross, S. P. et al. Interactions and regulation of molecular motors in Xenopus melanophores. J. Cell Biol. 156, 855–865 (2002)
    Article CAS Google Scholar
  20. Kim, H. et al. Microtubule binding by dynactin is required for microtubule organization but not cargo transport. J. Cell Biol. 176, 641–651 (2007)
    Article CAS Google Scholar
  21. Bouchard, P., Penningroth, S. M., Cheung, A., Gagnon, C. & Bardin, C. W. erythro-9-[3-(2-Hydroxynonyl)]adenine is an inhibitor of sperm motility that blocks dynein ATPase and protein carboxylmethylase activities. Proc. Natl Acad. Sci. USA 78, 1033–1036 (1981)
    Article ADS CAS Google Scholar
  22. Arasaki, K., Tani, K., Yoshimori, T., Stephens, D. J. & Tagaya, M. Nordihydroguaiaretic acid affects multiple dynein-dynactin functions in interphase and mitotic cells. Mol. Pharmacol. 71, 454–460 (2007)
    Article CAS Google Scholar
  23. Schliwa, M., Ezzell, R. M. & Euteneuer, U. Erythro-9-[3-(2-hydroxynonyl)]adenine is an effective inhibitor of cell motility and actin assembly. Proc. Natl Acad. Sci. USA 81, 6044–6048 (1984)
    Article ADS CAS Google Scholar
  24. Park, S., Lee, D. K. & Yang, C. H. Inhibition of fos-jun-DNA complex formation by dihydroguaiaretic acid and in vitro cytotoxic effects on cancer cells. Cancer Lett. 127, 23–28 (1998)
    Article CAS Google Scholar
  25. Zhu, G. et al. Synthesis and biological evaluation of purealin and analogues as cytoplasmic dynein heavy chain inhibitors. J. Med. Chem. 49, 2063–2076 (2006)
    Article CAS Google Scholar
  26. Maldonado, M. & Kapoor, T. M. Constitutive Mad1 targeting to kinetochores uncouples checkpoint signalling from chromosome biorientation. Nature Cell Biol. 13, 475–482 (2011)
    Article CAS Google Scholar
  27. Woehlke, G. et al. Microtubule interaction site of the kinesin motor. Cell 90, 207–216 (1997)
    Article CAS Google Scholar
  28. Kapoor, T. M. & Mitchison, T. J. Allele-specific activators and inhibitors for kinesin. Proc. Natl Acad. Sci. USA 96, 9106–9111 (1999)
    Article ADS CAS Google Scholar
  29. Hook, P. et al. Long range allosteric control of cytoplasmic dynein ATPase activity by the stalk and C-terminal domains. J. Biol. Chem. 280, 33045–33054 (2005)
    Article Google Scholar
  30. Taipale, J. et al. Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine. Nature 406, 1005–1009 (2000)
    Article ADS CAS Google Scholar

Download references