Brain-wide neuronal dynamics during motor adaptation in zebrafish (original) (raw)

References

  1. Wall, P. D., Freeman, J. & Major, D. Dorsal horn cells in spinal and in freely moving rats. Exp. Neurol. 19, 519–529 (1967)
    Article CAS Google Scholar
  2. Flusberg, B. A. et al. High-speed, miniaturized fluorescence microscopy in freely moving mice. Nature Methods 5, 935–938 (2008)
    Article CAS Google Scholar
  3. Naumann, E. A., Kampff, A. R., Prober, D. A., Schier, A. F. & Engert, F. Monitoring neural activity with bioluminescence during natural behavior. Nature Neurosci. 13, 513–520 (2010)
    Article CAS Google Scholar
  4. Dombeck, D. A., Harvey, C. D., Tian, L., Looger, L. L. & Tank, D. W. Functional imaging of hippocampal place cells at cellular resolution during virtual navigation. Nature Neurosci. 13, 1433–1440 (2010)
    Article CAS Google Scholar
  5. Maimon, G., Straw, A. D. & Dickinson, M. H. Active flight increases the gain of visual motion processing in Drosophila . Nature Neurosci. 13, 393–399 (2010)
    Article CAS Google Scholar
  6. Seelig, J. D. et al. Two-photon calcium imaging from head-fixed Drosophila during optomotor walking behavior. Nature Methods 7, 535–540 (2010)
    Article CAS Google Scholar
  7. Fry, S. N., Rohrseitz, N., Straw, A. D. & Dickinson, M. H. Visual control of flight speed in Drosophila melanogaster . J. Exp. Biol. 212, 1120–1130 (2009)
    Article Google Scholar
  8. Möhl, B. Short-term learning during flight control in Locusta migratoria . J. Comp. Physiol. 163, 803–812 (1988)
    Article Google Scholar
  9. Wolf, R., Voss, A., Hein, S., Heisenberg, M. & Sullivan, G. D. Can a fly ride a bicycle? Phil. Trans. R. Soc. Lond. B 337, 261–269 (1992)
    Article ADS Google Scholar
  10. du Lac, S., Raymond, J. L., Sejnowski, T. J. & Lisberger, S. G. Learning and memory in the vestibulo-ocular reflex. Annu. Rev. Neurosci. 18, 409–441 (1995)
    Article CAS Google Scholar
  11. Raymond, J. L., Lisberger, S. G. & Mauk, M. D. The cerebellum: a neuronal learning machine? Science 272, 1126–1131 (1996)
    Article ADS CAS Google Scholar
  12. Gilbert, P. F. & Thach, W. T. Purkinje cell activity during motor learning. Brain Res. 128, 309–328 (1977)
    Article CAS Google Scholar
  13. Körding, K. P. & Wolpert, D. M. Bayesian integration in sensorimotor learning. Nature 427, 244–247 (2004)
    Article ADS Google Scholar
  14. Portugues, R. & Engert, F. Adaptive locomotor behavior in larval zebrafish. Front. Syst. Neurosci. 5, 72 (2011)
    Article Google Scholar
  15. Rock, I. & Smith, D. The optomotor response and induced motion of the self. Perception 15, 497–502 (1986)
    Article CAS Google Scholar
  16. Orger, M. B., Smear, M. C., Anstis, S. M. & Baier, H. Perception of Fourier and non-Fourier motion by larval zebrafish. Nature Neurosci. 3, 1128–1133 (2000)
    Article CAS Google Scholar
  17. Gahtan, E., Sankrithi, N., Campos, J. B. & O’Malley, D. M. Evidence for a widespread brain stem escape network in larval zebrafish. J. Neurophysiol. 87, 608–614 (2002)
    Article Google Scholar
  18. Ohki, K., Chung, S., Ch’ng, Y. H., Kara, P. & Reid, R. C. Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex. Nature 433, 597–603 (2005)
    Article ADS CAS Google Scholar
  19. Denk, W., Strickler, J. H. & Webb, W. W. Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990)
    Article ADS CAS Google Scholar
  20. Higashijima, S.-I., Masino, M. A., Mandel, G. & Fetcho, J. R. Imaging neuronal activity during zebrafish behavior with a genetically encoded calcium indicator. J. Neurophysiol. 90, 3986–3997 (2003)
    Article Google Scholar
  21. Bene, F. D. et al. Filtering of visual information in the tectum by an identified neural circuit. Science 330, 669–673 (2010)
    Article ADS Google Scholar
  22. Douglass, A. D., Kraves, S., Deisseroth, K., Schier, A. F. & Engert, F. Escape behavior elicited by single, channelrhodopsin-2-evoked spikes in zebrafish somatosensory neurons. Curr. Biol. 18, 1133–1137 (2008)
    Article CAS Google Scholar
  23. Chong, M. and Drapeau, P. Interaction between hindbrain and spinal networks during the development of locomotion in zebrafish. Dev. Neurobiol. 67, 933–947 (2007)
    Article Google Scholar
  24. Orger, M. B., Kampff, A. R., Severi, K. E., Bollmann, J. H. & Engert, F. Control of visually guided behavior by distinct populations of spinal projection neurons. Nature Neurosci. 11, 327–333 (2008)
    Article CAS Google Scholar
  25. O’Malley, D. M., Kao, Y. H. & Fetcho, J. R. Imaging the functional organization of zebrafish hindbrain segments during escape behaviors. Neuron 17, 1145–1155 (1996)
    Article Google Scholar
  26. Dombeck, D. A., Khabbaz, A. N., Collman, F., Adelman, T. L. & Tank, D. W. Imaging large-scale neural activity with cellular resolution in awake, mobile mice. Neuron 56, 43–57 (2007)
    Article CAS Google Scholar
  27. Masino, M. A. & Fetcho, J. R. Fictive swimming motor patterns in wild type and mutant larval zebrafish. J. Neurophysiol. 93, 3177–3188 (2005)
    Article Google Scholar
  28. Cohen, A. H. & Wallén, P. The neuronal correlate of locomotion in fish. “fictive swimming” induced in an in vitro preparation of the lamprey spinal cord. Exp. Brain Res. 41, 11–18 (1980)
    Article CAS Google Scholar
  29. Tallini, Y. N. et al. Imaging cellular signals in the heart in vivo: cardiac expression of the high-signal Ca2+ indicator GCaMP2. Proc. Natl Acad. Sci. USA 103, 4753–4758 (2006)
    Article ADS CAS Google Scholar
  30. Park, H. C. et al. Analysis of upstream elements in the _Hu_C promoter leads to the establishment of transgenic zebrafish with fluorescent neurons. Dev. Biol. 227, 279–293 (2000)
    Article CAS Google Scholar
  31. Ito, M., Shiida, T., Yagi, N. & Yamamoto, M. Visual influence on rabbit horizontal vestibulo-ocular reflex presumably effected via the cerebellar flocculus. Brain Res. 65, 170–174 (1974)
    Article CAS Google Scholar
  32. Mazor, O. & Laurent, G. Transient dynamics versus fixed points in odor representations by locust antennal lobe projection neurons. Neuron 48, 661–673 (2005)
    Article CAS Google Scholar
  33. Yaksi, E., von Saint Paul, F., Niessing, J., Bundschuh, S. T. & Friedrich, R. W. Transformation of odor representations in target areas of the olfactory bulb. Nature Neurosci. 12, 474–482 (2009)
    Article CAS Google Scholar
  34. Kinkhabwala, A. et al. A structural and functional ground plan for neurons in the hindbrain of zebrafish. Proc. Natl Acad. Sci. USA 108, 1164–1169 (2011)
    Article ADS CAS Google Scholar
  35. Koyama, M., Kinkhabwala, A., Satou, C., Higashijima, S.-I. & Fetcho, J. Mapping a sensory-motor network onto a structural and functional ground plan in the hindbrain. Proc. Natl Acad. Sci. USA 108, 1170–1175 (2011)
    Article ADS CAS Google Scholar
  36. Bae, Y.-K. et al. Anatomy of zebrafish cerebellum and screen for mutations affecting its development. Dev. Biol. 330, 406–426 (2009)
    Article CAS Google Scholar
  37. Kani, S. et al. Proneural gene-linked neurogenesis in zebrafish cerebellum. Dev. Biol. 343, 1–17 (2010)
    Article CAS Google Scholar
  38. Volkmann, K., Chen, Y.-Y., Harris, M. P., Wullimann, M. F. & Köster, R. W. The zebrafish cerebellar upper rhombic lip generates tegmental hindbrain nuclei by long-distance migration in an evolutionary conserved manner. J. Comp. Neurol. 518, 2794–2817 (2010)
    PubMed Google Scholar
  39. Wullimann, M. F., Rupp, B. & Reichert, H. Neuroanatomy of the Zebrafish Brain: a Topological Atlas (Birkhäuser, 1996)
    Book Google Scholar
  40. Marr, D. A theory of cerebellar cortex. J. Physiol. 202, 437–470 (1969)
    Article CAS Google Scholar
  41. Albus, J. A theory of cerebellar function. Math. Biosci. 10, 25–61 (1971)
    Article Google Scholar
  42. Boyden, E. S. & Raymond, J. L. Active reversal of motor memories reveals rules governing memory encoding. Neuron 39, 1031–1042 (2003)
    Article CAS Google Scholar
  43. Matsumoto, N., Yoshida, M. & Uematsu, K. Effects of partial ablation of the cerebellum on sustained swimming in goldfish. Brain Behav. Evol. 70, 105–114 (2007)
    Article Google Scholar
  44. Roberts, B. L., van Rossem, A. & de Jager, S. The influence of cerebellar lesions on the swimming performance of the trout. J. Exp. Biol. 167, 171–178 (1992)
    CAS PubMed Google Scholar
  45. Aizenberg, M. & Schuman, E. M. Cerebellar-dependent learning in larval zebrafish. J. Neurosci. 31, 8708–8712 (2011)
    Article CAS Google Scholar
  46. Ma, L., Punnamoottil, B., Rinkwitz, S. & Baker, R. Mosaic hoxb4a neuronal pleiotropism in zebrafish caudal hindbrain. PloS ONE 4, e5944 (2009)
    Article ADS Google Scholar
  47. De Zeeuw, C. I. et al. Microcircuitry and function of the inferior olive. Trends Neurosci. 21, 391–400 (1998)
    Article CAS Google Scholar
  48. Miri, A. et al. Spatial gradients and multidimensional dynamics in a neural integrator circuit. Nature Neurosci. 14, 1150–1159 (2011)
    Article CAS Google Scholar
  49. Bennett, A. F. Temperature and muscle. J. Exp. Biol. 115, 333–344 (1985)
    CAS PubMed Google Scholar
  50. Ruta, V., Datta, S. R., Vasconcelos, M. L., Freeland, J., Looger, L. L. & Axel, R. A dimorphic pheromone circuit in Drosophila from sensory input to descending output. Nature 468, 686–690 (2010)
    Article ADS CAS Google Scholar
  51. Hieber, V., Dai, X., Foreman, M. & Goldman, D. Induction of α1-tubulin gene expression during development and regeneration of the fish central nervous system. J. Neurobiol. 37, 429–440 (1998)
    Article CAS Google Scholar
  52. Mukamel, E. A., Nimmerjahn, A. & Schnitzer, M. J. Automated analysis of cellular signals from large-scale calcium imaging data. Neuron 63, 747–760 (2009)
    Article CAS Google Scholar

Download references