Zero-valent sulphur is a key intermediate in marine methane oxidation (original) (raw)

References

  1. Knittel, K. & Boetius, A. Anaerobic oxidation of methane: progress with an unknown process. Annu. Rev. Microbiol. 63, 311–334 (2009)
    CAS PubMed Google Scholar
  2. Hoehler, T. M., Alperin, M. J., Albert, D. B. & Martens, C. S. Field and laboratory studies of methane oxidation in an anoxic marine sediment: evidence for a methanogen-sulfate reducer consortium. Glob. Biogeochem. Cycles 8, 451–463 (1994)
    ADS CAS Google Scholar
  3. Boetius, A. et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407, 623–626 (2000)
    ADS CAS Google Scholar
  4. Orphan, V. J., House, C. H., Hinrichs, K. U., McKeegan, K. D. & DeLong, E. F. Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science 293, 484–487 (2001)
    CAS PubMed Google Scholar
  5. Alperin, M. & Hoehler, T. The ongoing mystery of sea-floor methane. Science 329, 288–289 (2010)
    ADS CAS PubMed Google Scholar
  6. Schreiber, L., Holler, T., Knittel, K., Meyerdierks, A. & Amann, R. Identification of the dominant sulfate-reducing bacterial partner of anaerobic methanotrophs of the ANME-2 clade. Environ. Microbiol. 12, 2327–2340 (2010)
    CAS PubMed Google Scholar
  7. Nauhaus, K., Albrecht, M., Elvert, M., Boetius, A. & Widdel, F. In vitro cell growth of marine archaeal-bacterial consortia during anaerobic oxidation of methane with sulfate. Environ. Microbiol. 9, 187–196 (2007)
    CAS PubMed Google Scholar
  8. Wegener, G., Niemann, H., Elvert, M., Hinrichs, K. U. & Boetius, A. Assimilation of methane and inorganic carbon by microbial communities mediating the anaerobic oxidation of methane. Environ. Microbiol. 10, 2287–2298 (2008)
    CAS PubMed Google Scholar
  9. Meulepas, R. J. W., Jagersma, C. G., Khadem, A. F., Stams, A. J. M. & Lens, P. N. L. Effect of methanogenic substrates on anaerobic oxidation of methane and sulfate reduction by an anaerobic methanotrophic enrichment. Appl. Microbiol. Biotechnol. 87, 1499–1506 (2010)
    CAS PubMed PubMed Central Google Scholar
  10. Nauhaus, K., Boetius, A., Kruger, M. & Widdel, F. In vitro demonstration of anaerobic oxidation of methane coupled to sulphate reduction in sediment from a marine gas hydrate area. Environ. Microbiol. 4, 296–305 (2002)
    CAS PubMed Google Scholar
  11. Sørensen, K. B., Finster, K. & Ramsing, N. B. Thermodynamic and kinetic requirements in anaerobic methane oxidizing consortia exclude hydrogen, acetate, and methanol as possible electron shuttles. Microb. Ecol. 42, 1–10 (2001)
    PubMed Google Scholar
  12. Orcutt, B. & Meile, C. Constraints on mechanisms and rates of anaerobic oxidation of methane by microbial consortia: process-based modeling of ANME-2 archaea and sulfate reducing bacteria interactions. Biogeosciences 5, 1587–1599 (2008)
    ADS CAS Google Scholar
  13. Alperin, M. J. & Hoehler, T. M. Anaerobic methane oxidation by archaea/sulfate-reducing bacteria aggregates: 1. Thermodynamic and physical constraints. Am. J. Sci. 309, 869–957 (2009)
    ADS CAS Google Scholar
  14. Moran, J. J. et al. Methyl sulfides as intermediates in the anaerobic oxidation of methane. Environ. Microbiol. 10, 162–173 (2008)
    CAS PubMed Google Scholar
  15. Meyerdierks, A. et al. Metagenome and mRNA expression analyses of anaerobic methanotrophic archaea of the ANME-1 group. Environ. Microbiol. 12, 422–439 (2010)
    CAS PubMed Google Scholar
  16. Shima, S. & Thauer, R. K. Methyl-coenzyme M reductase and the anaerobic oxidation of methane in methanotrophic Archaea. Curr. Opin. Microbiol. 8, 643–648 (2005)
    CAS PubMed Google Scholar
  17. Holmkvist, L. et al. Sulfate reduction below the sulfate-methane transition in Black Sea sediments. Deep Sea Res. Part I Oceanogr. Res. Pap. 58, 493–504 (2011)
    ADS CAS Google Scholar
  18. Joye, S. B. et al. The anaerobic oxidation of methane and sulfate reduction in sediments from Gulf of Mexico cold seeps. Chem. Geol. 205, 219–238 (2004)
    ADS CAS Google Scholar
  19. Hansen, L. B., Finster, K., Fossing, H. & Iversen, N. Anaerobic methane oxidation in sulfate depleted sediments: effects of sulfate and molybdate additions. Aquat. Microb. Ecol. 14, 195–204 (1998)
    Google Scholar
  20. Kamyshny, A., Ekeltchik, I., Gun, J. & Lev, O. Method for the determination of inorganic polysulfide distribution in aquatic systems. Anal. Chem. 78, 2631–2639 (2006)
    CAS PubMed Google Scholar
  21. Pasteris, J. D., Freeman, J. J., Goffredi, S. K. & Buck, K. R. Raman spectroscopic and laser scanning confocal microscopic analysis of sulfur in living sulfur-precipitating marine bacteria. Chem. Geol. 180, 3–18 (2001)
    ADS CAS Google Scholar
  22. Trofimov, B. A., Sinegovskaya, L. M. & Gusarova, N. K. Vibrations of the S-S bond in elemental sulfur and organic polysulfides: a structural guide. J. Sulfur Chem. 30, 518–554 (2009)
    CAS Google Scholar
  23. Holler, T. et al. Carbon and sulfur back flux during anaerobic microbial oxidation of methane and coupled sulfate reduction. Proc. Natl Acad. Sci. USA 108, E1484–E1490 (2011)
    CAS PubMed Google Scholar
  24. Basen, M. et al. Bacterial enzymes for dissimilatory sulfate reduction in a marine microbial mat (Black Sea) mediating anaerobic oxidation of methane. Environ. Microbiol. 13, 1370–1379 (2011)
    CAS PubMed Google Scholar
  25. Thauer, R. K. Biochemistry of methanogenesis: a tribute to Marjory Stephenson. Microbiology 144, 2377–2406 (1998)
    CAS PubMed Google Scholar
  26. Widdel, F., Musat, F., Knittel, K. & Galushko, A. in Sulphate-Reducing Bacteria: Environmental and Engineered Systems (eds Barton, L. et al.) 265–303 (Cambridge Univ. Press, 2007)
    Google Scholar
  27. Johnson, E. F. & Mukhopadhyay, B. in Microbial Sulfur Metabolism. (eds Dahl, C. et al.) 202–216 (Springer, 2008)
    Google Scholar
  28. Thauer, R. K. & Shima, S. in Incredible Anaerobes: from Physiology to Genomics to Fuels Vol. 1125 158–170 (Wiley-Blackwell, 2008)
    Google Scholar
  29. Thauer, R. K. Anaerobic oxidation of methane with sulfate: on the reversibility of the reactions that are catalyzed by enzymes also involved in methanogenesis from CO2 . Curr. Opin. Microbiol. 14, 292–299 (2011)
    CAS PubMed Google Scholar
  30. Orphan, V. J., House, C. H., Hinrichs, K. U., McKeegan, K. D. & DeLong, E. F. Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments. Proc. Natl Acad. Sci. USA 99, 7663–7668 (2002)
    ADS CAS PubMed Google Scholar
  31. Krämer, M. & Cypionka, H. Sulfate formation via ATP sulfurylase in thiosulfate-disproportionating and sulfite-disproportionating bacteria. Arch. Microbiol. 151, 232–237 (1989)
    Google Scholar
  32. Trüper, H. G. & Fischer, U. Anaerobic oxidation of sulfur compounds as electron donors for bacterial photosynthesis. Phil. Trans. R. Soc. Lond. B 298, 529–542 (1982)
    ADS Google Scholar
  33. House, C. H., Beal, E. J. & Orphan, V. J. The apparent involvement of ANMEs in mineral dependent methane oxidation, as an analog for possible Martian methanotrophy. Life 1, 19–33 (2011)
    ADS CAS PubMed PubMed Central Google Scholar
  34. Treude, T. et al. Consumption of methane and CO2 by methanotrophic microbial mats from gas seeps of the anoxic Black Sea. Appl. Environ. Microbiol. 73, 2271–2283 (2007)
    CAS PubMed PubMed Central Google Scholar
  35. Rickard, D. & Luther, G. W. Chemistry of iron sulfides. Chem. Rev. 107, 514–562 (2007)
    CAS PubMed Google Scholar
  36. Niemann, H. et al. Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink. Nature 443, 854–858 (2006)
    ADS CAS PubMed Google Scholar
  37. Lösekann, T. et al. Diversity and abundance of aerobic and anaerobic methane oxidizers at the Haakon Mosby mud volcano, Barents Sea. Appl. Environ. Microbiol. 73, 3348–3362 (2007)
    PubMed PubMed Central Google Scholar
  38. Pernthaler, A. et al. Diverse syntrophic partnerships from deep-sea methane vents revealed by direct cell capture and metagenomics. Proc. Natl Acad. Sci. USA 105, 7052–7057 (2008)
    ADS CAS PubMed Google Scholar
  39. Lovley, D. R. & Phillips, E. J. P. Novel processes for anaerobic sulfate production from elemental sulfur by sulfate-reducing bacteria. Appl. Environ. Microbiol. 60, 2394–2399 (1994)
    CAS PubMed PubMed Central Google Scholar
  40. Fuseler, K. & Cypionka, H. Elemental sulfur as an intermediate of sulfide oxidation with oxygen by Desulfobulbus propionicus . Arch. Microbiol. 164, 104–109 (1995)
    CAS Google Scholar
  41. Parkes, R. J. et al. Deep sub-seafloor prokaryotes stimulated at interfaces over geological time. Nature 436, 390–394 (2005)
    ADS CAS PubMed Google Scholar
  42. Lipp, J. S., Morono, Y., Inagaki, F. & Hinrichs, K. U. Significant contribution of Archaea to extant biomass in marine subsurface sediments. Nature 454, 991–994 (2008)
    ADS CAS PubMed Google Scholar
  43. Teske, A. & Sørensen, K. B. Uncultured archaea in deep marine subsurface sediments: have we caught them all? ISME J. 2, 3–18 (2008)
    CAS PubMed Google Scholar
  44. Kubo, K. et al. Archaea of the Miscellaneous Crenarchaeotal Group are abundant, diverse and widespread in marine sediments. ISME J. 6, 1949–1965 (2012)
    CAS PubMed PubMed Central Google Scholar
  45. Meysman, F. J. R. & Middelburg, J. J. Acid-volatile sulfide (AVS) — a comment. Mar. Chem. 97, 206–212 (2005)
    CAS Google Scholar
  46. Holmkvist, L., Ferdelman, T. G. & Jørgensen, B. B. A cryptic sulfur cycle driven by iron in the methane zone of marine sediment (Aarhus Bay, Denmark). Geochim. Cosmochim. Acta 75, 3581–3599 (2011)
    ADS CAS Google Scholar
  47. Philippot, P. et al. Early Archaean microorganisms preferred elemental sulfur, not sulfate. Science 317, 1534–1537 (2007)
    ADS CAS Google Scholar
  48. Stumm, W. & Morgan, J. J. in Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters 3rd edn 990–1003 (Wiley-Interscience, 1996)
    Google Scholar
  49. Kamyshny, A., Goifma, A., Gun, J., Rizkov, D. & Lev, O. Equilibrium distribution of polysulfide ions in aqueous solutions at 25°C: a new approach for the study of polysulfide’s equilibrium. Environ. Sci. Technol. 38, 6633–6644 (2004)
    ADS CAS PubMed Google Scholar
  50. Mastalerz, V., de Lange, G. J., Dählmann, A. & Feseker, T. Active venting at the Isis mud volcano, offshore Egypt: origin and migration of hydrocarbons. Chem. Geol. 246, 87–106 (2007)
    ADS CAS Google Scholar
  51. Widdel, F. & Bak, F. in The Prokaryotes (eds. Balows, A. T. et al.) Vol. 4 3352–3378 (Springer, 1992)
    Google Scholar
  52. Cord-Ruwisch, R. A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. J. Microbiol. Methods 4, 33–36 (1985)
    CAS Google Scholar
  53. Saleh, A. M., Macpherson, R. & Miller, J. D. A. The effect of inhibitors on sulphate reducing bacteria: a compilation. J. Appl. Bacteriol. 27, 281–293 (1964)
    CAS Google Scholar
  54. Cline, J. D. Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol. Oceanogr. 14, 454–458 (1969)
    ADS CAS Google Scholar
  55. Steudel, R., Göbel, T. & Holdt, G. The molecular composition of hydrophilic sulfur sols prepared by acid decomposition of thiosulfate. Z. Naturforsch. 43b, 203–218 (1988)
    Google Scholar
  56. Musat, N. et al. A single-cell view on the ecophysiology of anaerobic phototrophic bacteria. Proc. Natl Acad. Sci. USA 105, 17861–17866 (2008)
    ADS CAS PubMed Google Scholar
  57. Tokuyasu, K. T. Technique for ultracryotomy of cell suspensions and tissues. J. Cell Biol. 57, 551–565 (1973)
    CAS PubMed PubMed Central Google Scholar
  58. Milucka, J., Widdel, F. & Shima, S. Immunological detection of enzymes for sulfate reduction in anaerobic methane-oxidizing consortia. Environ. Microbiol. http://dx.doi.org/10.1111/1462-2920.12003 (28 September 2012)
  59. Huang, W. E. et al. Raman-FISH: combining stable-isotope Raman spectroscopy and fluorescence in situ hybridization for the single cell analysis of identity and function. Environ. Microbiol. 9, 1878–1889 (2007)
    CAS PubMed Google Scholar
  60. Stahl, D. A. & Amann, R. in Nucleic Acid Techniques in Bacterial Systematics (eds. Stackebrandt, E. & Goodfellow, M. ) 205–248 (John Wiley, 1991)
    Google Scholar
  61. Daims, H., Brühl, A., Amann, R., Schleifer, K. H. & Wagner, M. Probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set. Syst. Appl. Microbiol. 22, 434–444 (1999)
    CAS PubMed Google Scholar
  62. Stoecker, K., Dorninger, C., Daims, H. & Wagner, M. Double-labeling of oligonucleotide probes for fluorescence in situ hybridization (DOPE-FISH) improves signal intensity and increases rRNA accessibility. Appl. Environ. Microbiol. 76, 922–926 (2010)
    CAS PubMed Google Scholar
  63. Loy, A., Maixner, F., Wagner, M. & Horn, M. probeBase—an online resource for rRNA-targeted oligonucleotide probes: new features 2007. Nucleic Acids Res. 35, D800–D804 (2007)
    CAS PubMed Google Scholar
  64. Polerecky, L. et al. Look@NanoSIMS – a tool for the analysis of nanoSIMS data in environmental microbiology Environ. Microbiol. 14, 1009–1023 (2012)
    Google Scholar
  65. Ploug, H. et al. Carbon and nitrogen fluxes associated with the cyanobacterium Aphanizomenon sp. in the Baltic Sea. ISME J. 4, 1215–1223 (2010)
    CAS PubMed Google Scholar
  66. Zopfi, J., Ferdelman, T. G. & Fossing, H. in Sulfur Biogeochemistry - Past and Present (eds. Amend, J., Edwards, K. J. & Lyons, T. W. ) Vol. 379 97–116 (The Geological Society of America Special Paper, 2004)
    Google Scholar
  67. Kamyshny, A. Solubility of cyclooctasulfur in pure water and sea water at different temperatures. Geochim. Cosmochim. Acta 73, 6022–6028 (2009)
    ADS CAS Google Scholar
  68. Kamyshny, A., Gun, J., Rizkov, D., Voitsekovski, T. & Lev, O. Equilibrium distributions of polysulfide ions in aqueous solutions at different temperatures by rapid phase derivitization. Environ. Sci. Technol. 41, 2395–2400 (2007)
    ADS CAS PubMed Google Scholar
  69. Kamyshny, A., Borkenstein, C. G. & Ferdelman, T. G. Protocol for quantitative detection of elemental sulfur and polysulfide zero-valent sulfur distribution in natural aquatic samples. Geostand. Geoanal. Res. 33, 415–435 (2009)
    CAS Google Scholar
  70. Thode, H. G., Monster, J. & Dunford, H. B. Sulphur isotope geochemistry. Geochim. Cosmochim. Acta 25, 159–174 (1961)
    ADS CAS Google Scholar
  71. Kallmeyer, J., Ferdelman, T. G., Weber, A., Fossing, H. & Jørgensen, B. B. A cold chromium distillation procedure for radiolabeled sulfide applied to sulfate reduction measurements. Limnol. Oceanogr. Methods 2, 171–180 (2004)
    Google Scholar
  72. Jørgensen, B. B. & Fenchel, T. Sulfur cycle of a marine sediment model system. Mar. Biol. 24, 189–201 (1974)
    Google Scholar
  73. Treude, T., Boetius, A., Knittel, K., Wallmann, K. & Jørgensen, B. B. Anaerobic oxidation of methane above gas hydrates at Hydrate Ridge, NE Pacific Ocean. Mar. Ecol. Prog. Ser. 264, 1–14 (2003)
    ADS CAS Google Scholar

Download references