Restriction of intestinal stem cell expansion and the regenerative response by YAP (original) (raw)
Pan, D. The Hippo signaling pathway in development and cancer. Dev. Cell19, 491–505 (2010) ArticleCAS Google Scholar
Ramos, A. & Camargo, F. D. The Hippo signaling pathway and stem cell biology. Trends Cell Biol.22, 339–346 (2012) ArticleCAS Google Scholar
Camargo, F. D. et al. YAP1 increases organ size and expands undifferentiated progenitor cells. Curr. Biol.17, 2054–2060 (2007) ArticleCAS Google Scholar
Dong, J. et al. Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell130, 1120–1133 (2007) ArticleCAS Google Scholar
Zhang, J. et al. YAP-dependent induction of amphiregulin identifies a non-cell-autonomous component of the Hippo pathway. Nature Cell Biol.11, 1444–1450 (2009) ArticleCAS Google Scholar
Roth, S. et al. Generation of a tightly regulated doxycycline-inducible model for studying mouse intestinal biology. Genesis47, 7–13 (2009) ArticleCAS Google Scholar
Pinto, D., Gregorieff, A., Begthel, H. & Clevers, H. Canonical Wnt signals are essential for homeostasis of the intestinal epithelium. Genes Dev.17, 1709–1713 (2003) ArticleCAS Google Scholar
Andreu, P. et al. A genetic study of the role of the Wnt/β-catenin signalling in Paneth cell differentiation. Dev. Biol.324, 288–296 (2008) ArticleCAS Google Scholar
Sato, T. et al. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature469, 415–418 (2011) ArticleADSCAS Google Scholar
van der Flier, L. G. et al. Transcription factor achaete scute-like 2 controls intestinal stem cell fate. Cell136, 903–912 (2009) ArticleCAS Google Scholar
Muñoz, J. et al. The Lgr5 intestinal stem cell signature: robust expression of proposed quiescent ‘+4’ cell markers. EMBO J.31, 3079–3091 (2012) Article Google Scholar
Fevr, T., Robine, S., Louvard, D. & Huelsken, J. Wnt/β-catenin is essential for intestinal homeostasis and maintenance of intestinal stem cells. Mol. Cell. Biol.27, 7551–7559 (2007) ArticleCAS Google Scholar
Cai, J. et al. The Hippo signaling pathway restricts the oncogenic potential of an intestinal regeneration program. Genes Dev.24, 2383–2388 (2010) ArticleCAS Google Scholar
Ashton, G. H. et al. Focal adhesion kinase is required for intestinal regeneration and tumorigenesis downstream of Wnt/c-Myc signaling. Dev. Cell19, 259–269 (2010) ArticleCAS Google Scholar
Davies, P. S., Dismuke, A. D., Powell, A. E., Carroll, K. H. & Wong, M. H. Wnt-reporter expression pattern in the mouse intestine during homeostasis. BMC Gastroenterol.8, 57 (2008) Article Google Scholar
Ootani, A. et al. Sustained in vitro intestinal epithelial culture within a Wnt-dependent stem cell niche. Nature Med.15, 701–706 (2009) ArticleCAS Google Scholar
Kim, K. A. et al. Mitogenic influence of human R-spondin1 on the intestinal epithelium. Science309, 1256–1259 (2005) ArticleADSCAS Google Scholar
Zhao, B. et al. TEAD mediates YAP-dependent gene induction and growth control. Genes Dev.22, 1962–1971 (2008) ArticleCAS Google Scholar
Schlegelmilch, K. et al. Yap1 acts downstream of α-catenin to control epidermal proliferation. Cell144, 782–795 (2011) ArticleCAS Google Scholar
Sansom, O. J. et al. Loss of Apc in vivo immediately perturbs Wnt signaling, differentiation, and migration. Genes Dev.18, 1385–1390 (2004) ArticleCAS Google Scholar
Imajo, M., Miyatake, K., Iimura, A., Miyamoto, A. & Nishida, E. A molecular mechanism that links Hippo signalling to the inhibition of Wnt/β-catenin signalling. EMBO J.31, 1109–1122 (2012) ArticleCAS Google Scholar
Cheung, A. F. et al. Complete deletion of Apc results in severe polyposis in mice. Oncogene29, 1857–1864 (2010) ArticleCAS Google Scholar
Varelas, X. et al. The Hippo pathway regulates Wnt/β-catenin signaling. Dev. Cell18, 579–591 (2010) ArticleCAS Google Scholar
Itoh, K., Brott, B. K., Bae, G. U., Ratcliffe, M. J. & Sokol, S. Y. Nuclear localization is required for Dishevelled function in Wnt/β-catenin signaling. J. Biol.4, 3 (2005) Article Google Scholar
Gan, X. Q. et al. Nuclear Dvl, c-Jun, β-catenin, and TCF form a complex leading to stabilization of β-catenin–TCF interaction. J. Cell Biol.180, 1087–1100 (2008) ArticleCAS Google Scholar
Metcalfe, C. et al. Dvl2 promotes intestinal length and neoplasia in the ApcMin mouse model for colorectal cancer. Cancer Res.70, 6629–6638 (2010) ArticleCAS Google Scholar
Van der Flier, L. G. et al. The intestinal Wnt/TCF signature. Gastroenterology132, 628–632 (2007) ArticleCAS Google Scholar
Chan, A. T., Ogino, S. & Fuchs, C. S. Aspirin and the risk of colorectal cancer in relation to the expression of COX-2. N. Engl. J. Med.356, 2131–2142 (2007) ArticleCAS Google Scholar
Konsavage, W. J., Kyler, S. L., Rennoll, S. A., Jin, G. & Yochum, G. S. Wnt/β-catenin signaling regulates Yes-associated protein (YAP) gene expression in colorectal carcinoma cells. J. Biol. Chem.287, 11730–11739 (2012) ArticleCAS Google Scholar
Avruch, J., Zhou, D. & Bardeesy, N. YAP oncogene overexpression supercharges colon cancer proliferation. Cell Cycle11, 1090–1096 (2012) ArticleCAS Google Scholar
Madison, B. B. et al. cis elements of the villin gene control expression in restricted domains of the vertical (crypt) and horizontal (duodenum, cecum) axes of the intestine. J. Biol. Chem.277, 33275–33283 (2002) ArticleCAS Google Scholar
El Marjou, F. et al. Tissue-specific and inducible Cre-mediated recombination in the gut epithelium. Genesis39, 186–193 (2004) ArticleCAS Google Scholar
Barker, N. et al. Identification of stem cells in small intestine and colon by marker gene Lgr5 . Nature449, 1003–1007 (2007) ArticleADSCAS Google Scholar
Colnot, S. et al. Colorectal cancers in a new mouse model of familial adenomatous polyposis: influence of genetic and environmental modifiers. Lab. Invest.84, 1619–1630 (2004) ArticleCAS Google Scholar
Barker, N. et al. Crypt stem cells as the cells-of-origin of intestinal cancer. Nature457, 608–611 (2009) ArticleADSCAS Google Scholar
Koo, B. K. et al. Controlled gene expression in primary Lgr5 organoid cultures. Nature Methods9, 81–83 (2012) ArticleCAS Google Scholar
Sato, T. et al. Single Lgr5 stem cells build crypt–villus structures in vitro without a mesenchymal niche. Nature459, 262–265 (2009) ArticleADSCAS Google Scholar
Meerbrey, K. L. et al. The pINDUCER lentiviral toolkit for inducible RNA interference in vitro and in vivo . Proc. Natl Acad. Sci. USA108, 3665–3670 (2011) ArticleADSCAS Google Scholar
Ogino, S. et al. Combined analysis of COX-2 and p53 expressions reveals synergistic inverse correlations with microsatellite instability and CpG island methylator phenotype in colorectal cancer. Neoplasia8, 458–464 (2006) ArticleCAS Google Scholar