Structure of class B GPCR corticotropin-releasing factor receptor 1 (original) (raw)
Gether, U. Uncovering molecular mechanisms involved in activation of G protein-coupled receptors. Endocr. Rev.21, 90–113 (2000) ArticleCAS Google Scholar
Lagerström, M. C. & Schiöth, H. B. Structural diversity of G protein-coupled receptors and significance for drug discovery. Nature Rev. Drug Discov.7, 339–357 (2008) Article Google Scholar
Venkatakrishnan, A. J. et al. Molecular signatures of G-protein-coupled receptors. Nature494, 185–194 (2013) ArticleADSCAS Google Scholar
Bhavsar, S., Mudaliar, S. & Cherrington, A. Evolution of exenatide as a diabetes therapeutic. Curr. Diabetes Rev.9, 161–193 (2013) PubMedPubMed Central Google Scholar
Berg, C., Neumeyer, K. & Kirkpatrick, P. Teriparatide. Nature Rev. Drug Discov.2, 257–258 (2003) ArticleCAS Google Scholar
Rosenbaum, D. M., Rasmussen, S. G. F. & Kobilka, B. K. The structure and function of G-protein-coupled receptors. Nature459, 356–363 (2009) ArticleADSCAS Google Scholar
Wang, C. et al. Structure of the human smoothened receptor bound to an antitumour agent. Nature497, 338–343 (2013) ArticleADSCAS Google Scholar
Congreve, M., Langmead, C. & Marshall, F. H. The use of GPCR structures in drug design. Adv. Pharmacol.62, 1–36 (2011) ArticleCAS Google Scholar
Pioszak, A. A., Parker, N. R., Suino-Powell, K. & Xu, H. E. Molecular recognition of corticotropin-releasing factor by its G-protein-coupled receptor CRFR1. J. Biol. Chem.283, 32900–32912 (2008) ArticleCAS Google Scholar
Grace, C. R. R. et al. NMR structure and peptide hormone binding site of the first extracellular domain of a type B1 G protein-coupled receptor. Proc. Natl Acad. Sci. USA101, 12836–12841 (2004) ArticleADSCAS Google Scholar
Runge, S., Thøgersen, H., Madsen, K., Lau, J. & Rudolph, R. Crystal structure of the ligand-bound glucagon-like peptide-1 receptor extracellular domain. J. Biol. Chem.283, 11340–11347 (2008) ArticleCAS Google Scholar
Pioszak, A. A. & Xu, H. E. Molecular recognition of parathyroid hormone by its G protein-coupled receptor. Proc. Natl Acad. Sci. USA105, 5034–5039 (2008) ArticleADSCAS Google Scholar
ter Haar, E. et al. Crystal structure of the ectodomain complex of the CGRP receptor, a class-B GPCR, reveals the site of drug antagonism. Structure18, 1083–1093 (2010) ArticleCAS Google Scholar
Kumar, S., Pioszak, A., Zhang, C., Swaminathan, K. & Xu, H. E. Crystal structure of the PAC1R extracellular domain unifies a consensus fold for hormone recognition by class B G-protein coupled receptors. PLoS ONE6, e19682 (2011) ArticleADSCAS Google Scholar
Koth, C. M. et al. Molecular basis for negative regulation of the glucagon receptor. Proc. Natl Acad. Sci. USA109, 14393–14398 (2012) ArticleADSCAS Google Scholar
Perrin, M. H. & Vale, W. W. Corticotropin releasing factor receptors and their ligand family. Ann. NY Acad. Sci.885, 312–328 (1999) ArticleADSCAS Google Scholar
Bale, T. L. & Vale, W. W. CRF and CRF receptors: role in stress responsivity and other behaviors. Annu. Rev. Pharmacol. Toxicol.44, 525–557 (2004) ArticleCAS Google Scholar
Hemley, C. F., McCluskey, A. & Keller, P. A. Corticotropin releasing hormone–a GPCR drug target. Curr. Drug Targets8, 105–115 (2007) ArticleCAS Google Scholar
Chen, Y. L. et al. 2-aryloxy-4-alkylaminopyridines: discovery of novel corticotropin-releasing factor 1 antagonists. J. Med. Chem.51, 1385–1392 (2008) ArticleCAS Google Scholar
Hoare, S. R. et al. Allosteric ligands for the corticotropin releasing factor type 1 receptor modulate conformational states involved in receptor activation. Mol. Pharmacol.73, 1371–1380 (2008) ArticleCAS Google Scholar
Zorrilla, E. P. & Koob, G. F. Progress in corticotropin-releasing factor-1 antagonist development. Drug Discov. Today15, 371–383 (2010) ArticleCAS Google Scholar
Serrano-Vega, M. J., Magnani, F., Shibata, Y. & Tate, C. G. Conformational thermostabilization of the β1-adrenergic receptor in a detergent-resistant form. Proc. Natl Acad. Sci. USA105, 877–882 (2008) ArticleADSCAS Google Scholar
Shibata, Y. et al. Thermostabilization of the neurotensin receptor NTS1. J. Mol. Biol.390, 262–277 (2009) ArticleCAS Google Scholar
Lebon, G., Bennett, K., Jazayeri, A. & Tate, C. G. Thermostabilisation of an agonist-bound conformation of the human adenosine A2A receptor. J. Mol. Biol.409, 298–310 (2011) ArticleCAS Google Scholar
Piserchio, A., Bisello, A., Rosenblatt, M., Chorev, M. & Mierke, D. F. Characterization of parathyroid hormone/receptor interactions: structure of the first extracellular loop. Biochemistry39, 8153–8160 (2000) ArticleCAS Google Scholar
Wootten, D., Simms, J., Miller, L. J., Christopoulos, A. & Sexton, P. M. Polar transmembrane interactions drive formation of ligand-specific and signal pathway-biased family B G protein-coupled receptor conformations. Proc. Natl Acad. Sci. USA110, 5211–5216 (2013) ArticleADSCAS Google Scholar
Katritch, V., Cherezov, V. & Stevens, R. C. Diversity and modularity of G protein-coupled receptor structures. Trends Pharmacol. Sci.33, 17–27 (2012) ArticleCAS Google Scholar
Mann, R. J., Al-Sabah, S., De Maturana, R. L., Sinfield, J. K. & Donnelly, D. Functional coupling of Cys-226 and Cys-296 in the glucagon-like peptide-1 (GLP-1) receptor indicates a disulfide bond that is close to the activation pocket. Peptides31, 2289–2293 (2010) ArticleCAS Google Scholar
Chien, E. Y. T. et al. Structure of the human dopamine D3 receptor in complex with a D2/D3 selective antagonist. Science330, 1091–1095 (2010) ArticleADSCAS Google Scholar
Ballesteros, J. A. & Weinstein, H. Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. Methods Neurosci.25, 366–428 (1995) ArticleCAS Google Scholar
Rasmussen, S. G. F. et al. Crystal structure of the β2 adrenergic receptor–Gs protein complex. Nature477, 549–555 (2011) ArticleADSCAS Google Scholar
Schipani, E., Kruse, K. & Jüppner, H. A constitutively active mutant PTH-PTHrP receptor in Jansen-type metaphyseal chondrodysplasia. Science268, 98–100 (1995) ArticleADSCAS Google Scholar
Heller, R. S., Kieffer, T. J. & Habener, J. F. Point mutations in the first and third intracellular loops of the glucagon-like peptide-1 receptor alter intracellular signaling. Biochem. Biophys. Res. Commun.223, 624–632 (1996) ArticleCAS Google Scholar
Hjorth, S. A., Orskov, C. & Schwartz, T. W. Constitutive activity of glucagon receptor mutants. Mol. Endocrinol.12, 78–86 (1998) ArticleCAS Google Scholar
Vohra, S. et al. Similarity between class A and class B G-protein-coupled receptors exemplified through calcitonin gene-related peptide receptor modelling and mutagenesis studies. J. R. Soc. Interface10, 20120846 (2013) Article Google Scholar
Hoare, S. R. J. et al. Single amino acid residue determinants of non-peptide antagonist binding to the corticotropin-releasing factor1 (CRF1) receptor. Biochem. Pharmacol.72, 244–255 (2006) ArticleCAS Google Scholar
Gardella, T. J., Luck, M. D., Fan, M. H. & Lee, C. Transmembrane residues of the parathyroid hormone (PTH)/PTH-related peptide receptor that specifically affect binding and signaling by agonist ligands. J. Biol. Chem.271, 12820–12825 (1996) ArticleCAS Google Scholar
Conner, A. C. et al. A key role for transmembrane prolines in calcitonin receptor-like receptor agonist binding and signalling: implications for family B G-protein-coupled receptors. Mol. Pharmacol.67, 20–31 (2005) ArticleCAS Google Scholar
Chugunov, A. O. et al. Evidence that interaction between conserved residues in transmembrane helices 2, 3, and 7 are crucial for human VPAC1 receptor activation. Mol. Pharmacol.78, 394–401 (2010) ArticleCAS Google Scholar
Ganguli, S. C. et al. Protean effects of a natural peptide agonist of the G protein-coupled secretin receptor demonstrated by receptor mutagenesis. J. Pharmacol. Exp. Ther.286, 593–598 (1998) CASPubMed Google Scholar
Robertson, N. et al. The properties of thermostabilised G protein-coupled receptors (StaRs) and their use in drug discovery. Neuropharmacology60, 36–44 (2011) ArticleCAS Google Scholar
Söding, J. Protein homology detection by HMM–HMM comparison. Bioinformatics21, 951–960 (2005) Article Google Scholar
Krogh, A., Larsson, B., von Heijne, G. & Sonnhammer, E. L. L. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol.305, 567–580 (2001) ArticleCAS Google Scholar
Kawate, T. & Gouaux, E. Fluorescence-detection size-exclusion chromatography for precrystallization screening of integral membrane proteins. Structure14, 673–681 (2006) ArticleCAS Google Scholar
Caffrey, M. & Cherezov, V. Crystallizing membrane proteins using lipidic cubic mesophases. Nature Protocols4, 706–731 (2009) ArticleCAS Google Scholar
Leslie, A. G. W. & Powell, H. R. Processing diffraction data with Mosflm. Evolv. Methods Macromol. Crystallogr.245, 41–51 (2007) Article Google Scholar
Winn, M. D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D67, 235–242 (2011) ArticleCAS Google Scholar
Hanson, M. A. et al. Crystal structure of a lipid G protein-coupled receptor. Science335, 851–855 (2012) ArticleADSCAS Google Scholar
McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Cryst.40, 658–674 (2007) ArticleCAS Google Scholar
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D66, 486–501 (2010) ArticleCAS Google Scholar
Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D66, 213–221 (2010) ArticleCAS Google Scholar
Murshudov, G. N. et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D67, 355–367 (2011) ArticleCAS Google Scholar
Haddadian, E. J. et al. Automated real-space refinement of protein structures using a realistic backbone move set. Biophys. J.101, 899–909 (2011) ArticleADSCAS Google Scholar
Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D66, 12–21 (2010) ArticleCAS Google Scholar