Van der Waals heterostructures (original) (raw)

References

  1. Novoselov, K. S. et al. A roadmap for graphene. Nature 490, 192–200 (2012)
    ADS CAS PubMed Google Scholar
  2. Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nature Nanotechnol. 5, 722–726 (2010)This paper attracted attention to hBN as a substrate and initiated the development of transfer techniques essential for the van der Waals reassembly.
    ADS CAS Google Scholar
  3. Mayorov, A. S. et al. Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Lett. 11, 2396–2399 (2011)
    ADS CAS PubMed Google Scholar
  4. Mayorov, A. S. et al. How close can one approach the Dirac point in graphene experimentally? Nano Lett. 12, 4629–4634 (2012)
    ADS CAS PubMed Google Scholar
  5. Bao, W. et al. Evidence for a spontaneous gapped state in ultraclean bilayer graphene. Proc. Natl Acad. Sci. USA 109, 10802–10805 (2012)
    ADS CAS PubMed PubMed Central Google Scholar
  6. Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005)This was the first paper to demonstrate the electric field effect and study electron transport in 2D crystals other than graphene.
    ADS CAS PubMed PubMed Central Google Scholar
  7. Mas-Ballesté, R., Gómez-Navarro, C., Gómez-Herrero, J. & Zamora, F. 2D materials: to graphene and beyond. Nanoscale 3, 20–30 (2011)
    ADS PubMed Google Scholar
  8. Osada, M. & Sasaki, T. Two-dimensional dielectric nanosheets: novel nanoelectronics from nanocrystal building blocks. Adv. Mater. 24, 210–228 (2012)
    CAS PubMed Google Scholar
  9. Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnol. 7, 699–712 (2012)
    ADS CAS Google Scholar
  10. Xu, M., Lian, T., Shi, M. & Chen, H. Graphene-like two-dimensional materials. Chem. Rev. 113, 3766–3798 (2013)We recommend this review for initial acquaintance with 2D materials other than graphene.
    CAS PubMed Google Scholar
  11. Butler, S. Z. et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7, 2898–2926 (2013)
    CAS PubMed Google Scholar
  12. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nature Nanotechnol. 6, 147–150 (2011)The paper attracted critical attention to electron transport in MoS 2 monolayers.
    ADS CAS Google Scholar
  13. Fuhrer, M. S. & Hone, J. Measurement of mobility in dual-gated MoS2 transistors. Nature Nanotechnol. 8, 146–147 (2013)
    ADS CAS Google Scholar
  14. Ponomarenko, L. A. et al. Tunable metal–insulator transition in double-layer graphene heterostructures. Nature Phys. 7, 958–961 (2011)This is the first demonstration of multilayer van der Waals heterostructures, beyond using hBN, mica and so on as a substrate.
    ADS CAS Google Scholar
  15. Britnell, L. et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335, 947–950 (2012)
    ADS CAS PubMed Google Scholar
  16. Haigh, S. J. et al. Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices. Nature Mater. 11, 764–767 (2012)The paper proves the concept of complex heterostructures, including manually assembled van der Waals superlattices, and shows that their interfaces can be atomically sharp and clean.
    ADS CAS Google Scholar
  17. Dean, C. R. et al. Graphene based heterostructures. Solid State Commun. 152, 1275–1282 (2012)
    ADS CAS Google Scholar
  18. Gorbachev, R. V. et al. Strong Coulomb drag and broken symmetry in double-layer graphene. Nature Phys. 8, 896–901 (2012)
    ADS CAS Google Scholar
  19. Georgiou, T. et al. Vertical field-effect transistor based on graphene–WS2 heterostructures for flexible and transparent electronics. Nature Nanotechnol. 8, 100–103 (2013)
    ADS CAS Google Scholar
  20. Kastner, M. A., Birgeneau, R. J., Shirane, G. & Endoh, Y. Magnetic, transport, and optical properties of monolayer copper oxides. Rev. Mod. Phys. 70, 897–928 (1998)
    ADS CAS Google Scholar
  21. Orenstein, J. & Millis, A. J. Advances in the physics of high-temperature superconductivity. Science 288, 468–474 (2000)
    ADS CAS PubMed Google Scholar
  22. Weller, T. E., Ellerby, M., Saxena, S. S., Smith, R. P. & Skipper, N. T. Superconductivity in the intercalated graphite compounds C6Yb and C6Ca. Nature Phys. 1, 39–41 (2005)
    ADS CAS Google Scholar
  23. Profeta, G., Calandra, M. & Mauri, F. Phonon-mediated superconductivity in graphene by lithium deposition. Nature Phys. 8, 131–134 (2012)
    ADS CAS Google Scholar
  24. Nandkishore, R., Levitov, L. S. & Chubukov, A. V. Chiral superconductivity from repulsive interactions in doped graphene. Nature Phys. 8, 158–163 (2012)
    ADS CAS Google Scholar
  25. Savini, G., Ferrari, A. C. & Giustino, F. First-principles prediction of doped graphane as a high-temperature electron-phonon superconductor. Phys. Rev. Lett. 105, 037002 (2010)
    ADS CAS PubMed Google Scholar
  26. Guinea, F. & Uchoa, B. Odd-momentum pairing and superconductivity in vertical graphene heterostructures. Phys. Rev. B 86, 134521 (2012)
    ADS Google Scholar
  27. Min, H., Bistritzer, R., Su, J. J. & MacDonald, A. H. Room-temperature superfluidity in graphene bilayers. Phys. Rev. B 78, 121401 (2008)
    ADS Google Scholar
  28. Perali, A., Neilson, D. & Hamilton, A. R. High-temperature superfluidity in double-bilayer graphene. Phys. Rev. Lett. 110, 146803 (2013)
    ADS CAS PubMed Google Scholar
  29. Geim, A. K. Random walk to graphene. Rev. Mod. Phys. 83, 851–862 (2011)
    ADS CAS Google Scholar
  30. Liu, L. et al. Graphene oxidation: thickness-dependent etching and strong chemical doping. Nano Lett. 8, 1965–1970 (2008)
    ADS CAS PubMed Google Scholar
  31. Elias, D. C. et al. Control of graphene’s properties by reversible hydrogenation: evidence for graphane. Science 323, 610–613 (2009)
    ADS CAS PubMed Google Scholar
  32. Ross, S. & Sussman, A. Surface oxidation of molybdenum disulfide. J. Phys. Chem. 59, 889–892 (1955)
    CAS Google Scholar
  33. Vogt, P. et al. Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. Phys. Rev. Lett. 108, 155501 (2012)
    ADS PubMed Google Scholar
  34. Fleurence, A. et al. Experimental evidence for epitaxial silicene on diboride thin films. Phys. Rev. Lett. 108, 245501 (2012)
    ADS PubMed Google Scholar
  35. Lui, C. H., Liu, L., Mak, K. F., Flynn, G. W. & Heinz, T. F. Ultraflat graphene. Nature 462, 339–341 (2009)
    ADS CAS PubMed Google Scholar
  36. Taychatanapat, T., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Electrically tunable transverse magnetic focusing in graphene. Nature Phys. 9, 225–229 (2013)
    ADS CAS Google Scholar
  37. Watanabe, K., Taniguchi, T. & Kanda, H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nature Mater. 3, 404–409 (2004)
    ADS CAS Google Scholar
  38. Zomer, P. J., Dash, S. P., Tombros, N. & van Wees, B. J. A transfer technique for high mobility graphene devices on commercially available hexagonal boron nitride. Appl. Phys. Lett. 99, 232104 (2011)
    ADS Google Scholar
  39. Meric, I. et al. Graphene field-effect transistors based on boron nitride gate dielectrics. Tech. Digest Int. Electron Devices Meet. 2010 IEEE Int. 10 556–559 10.1109/IEDM.2010.5703419 (2010)
    Article Google Scholar
  40. Lee, G. H. et al. Electron tunneling through atomically flat and ultrathin hexagonal boron nitride. Appl. Phys. Lett. 99, 243114 (2011)
    ADS Google Scholar
  41. Britnell, L. et al. Electron tunneling through ultrathin boron nitride crystalline barriers. Nano Lett. 12, 1707–1710 (2012)
    ADS CAS PubMed Google Scholar
  42. Gordon, R. A., Yang, D., Crozier, E. D., Jiang, D. T. & Frindt, R. F. Structures of exfoliated single layers of WS2, MoS2, and MoSe2 in aqueous suspension. Phys. Rev. B 65, 125407 (2002)
    ADS Google Scholar
  43. Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2 . Nano Lett. 10, 1271–1275 (2010)
    ADS CAS PubMed Google Scholar
  44. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010)
    ADS PubMed Google Scholar
  45. Zeng, H., Dai, J., Yao, W., Xiao, D. & Cui, X. Valley polarization in MoS2 monolayers by optical pumping. Nature Nanotechnol. 7, 490–493 (2012)
    ADS CAS Google Scholar
  46. Mak, K. F., He, K., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nature Nanotechnol. 7, 494–498 (2012)
    ADS CAS Google Scholar
  47. Fang, H. et al. High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Lett. 12, 3788–3792 (2012)
    ADS CAS PubMed Google Scholar
  48. Zhao, W. et al. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2 . ACS Nano 7, 791–797 (2013)
    CAS PubMed Google Scholar
  49. Tonndorf, P. et al. Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2 . Opt. Express 21, 4908–4916 (2013)
    ADS CAS PubMed Google Scholar
  50. Nair, R. R. et al. Fluorographene: a two-dimensional counterpart of Teflon. Small 6, 2877–2884 (2010)
    CAS PubMed Google Scholar
  51. Bianco, E. et al. Stability and exfoliation of germanane: a germanium graphane analogue. ACS Nano 7, 4414–4421 (2013)
    CAS PubMed Google Scholar
  52. Park, S. & Ruoff, R. S. Chemical methods for the production of graphenes. Nature Nanotechnol. 4, 217–224 (2009)
    ADS CAS Google Scholar
  53. Jin, Z., Yao, J., Kittrell, C. & Tour, J. M. Large-scale growth and characterizations of nitrogen-doped monolayer graphene sheets. ACS Nano 5, 4112–4117 (2011)
    CAS PubMed Google Scholar
  54. Ci, L. et al. Atomic layers of hybridized boron nitride and graphene domains. Nature Mater. 9, 430–435 (2010)
    ADS CAS Google Scholar
  55. Gamble, F. R. et al. Intercalation complexes of Lewis bases and layered sulfides: a large class of new superconductors. Science 174, 493–497 (1971)
    ADS CAS PubMed Google Scholar
  56. Coleman, J. N. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331, 568–571 (2011)
    ADS CAS PubMed Google Scholar
  57. Addou, R., Dahal, A. & Batzill, M. Growth of a two-dimensional dielectric monolayer on quasi-freestanding graphene. Nature Nanotechnol. 8, 41–45 (2013)
    ADS CAS Google Scholar
  58. Tusche, C., Meyerheim, H. L. & Kirschner, J. Observation of depolarized ZnO(0001) monolayers: formation of unreconstructed planar sheets. Phys. Rev. Lett. 99, 026102 (2007)
    ADS CAS PubMed Google Scholar
  59. Reina, A. et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 30–35 (2009)
    ADS CAS PubMed Google Scholar
  60. Li, X. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009)
    ADS CAS PubMed Google Scholar
  61. Bae, S. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnol. 5, 574–578 (2010)
    ADS CAS Google Scholar
  62. Song, L. et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 10, 3209–3215 (2010)
    ADS CAS PubMed Google Scholar
  63. Kim, K. K. et al. Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition. Nano Lett. 12, 161–166 (2012)
    ADS PubMed Google Scholar
  64. Bresnehan, M. S. et al. Integration of hexagonal boron nitride with quasi-freestanding epitaxial graphene: toward wafer-scale, high-performance devices. ACS Nano 6, 5234–5241 (2012)
    CAS PubMed Google Scholar
  65. Bertolazzi, S., Krasnozhon, D. & Kis, A. Nonvolatile memory cells based on MoS2/graphene heterostructures. ACS Nano 7, 3246–3252 (2013)
    CAS PubMed Google Scholar
  66. Hunt, B. et al. Massive Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure. Science 340, 1427–1430 (2013)
    ADS CAS PubMed Google Scholar
  67. Ponomarenko, L. A. et al. Effect of a high-kappa environment on charge carrier mobility in graphene. Phys. Rev. Lett. 102, 206603 (2009)
    ADS CAS PubMed Google Scholar
  68. Yu, G. L. et al. Interaction phenomena in graphene seen through quantum capacitance. Proc. Natl Acad. Sci. USA 110, 3282–3286 (2013)
    ADS CAS PubMed PubMed Central Google Scholar
  69. Yang, H. et al. Graphene barristor, a triode device with a gate-controlled Schottky barrier. Science 336, 1140–1143 (2012)
    ADS CAS PubMed Google Scholar
  70. Kotov, V. N., Pereira, V. M., Castro Neto, A. H. & Guinea, F. Electron–electron interactions in graphene: current status and perspectives. Rev. Mod. Phys. 84, 1067–1125 (2012)
    ADS CAS Google Scholar
  71. Das Sarma, S., Adam, S., Hwang, E. H. & Rossi, E. Electronic transport in two dimensional graphene. Rev. Mod. Phys. 83, 407–470 (2011)
    ADS CAS Google Scholar
  72. McChesney, J. L. et al. Extended van Hove singularity and superconducting instability in doped graphene. Phys. Rev. Lett. 104, 136803 (2010)
    ADS CAS PubMed Google Scholar
  73. Tutuc, E. & Kim, S. Magnetotransport and Coulomb drag in graphene double layers. Solid State Commun. 15, 1283–1288 (2012)
    Google Scholar
  74. Eisenstein, J. P. & MacDonald, A. H. Bose–Einstein condensation of excitons in bilayer electron systems. Nature 432, 691–694 (2004)
    ADS CAS PubMed Google Scholar
  75. Nandi, D., Finck, A. D. K., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Exciton condensation and perfect Coulomb drag. Nature 488, 481–484 (2012)
    ADS CAS PubMed Google Scholar
  76. Ponomarenko, L. A. et al. Cloning of Dirac fermions in graphene superlattices. Nature 497, 594–597 (2013)
    ADS CAS PubMed Google Scholar
  77. Björkman, T., Gulans, A., Krasheninnikov, A. V. & Nieminen, R. M. van der Waals bonding in layered compounds from advanced density-functional first-principles calculations. Phys. Rev. Lett. 108, 235502 (2012)
    ADS PubMed Google Scholar
  78. Li, G. et al. Observation of Van Hove singularities in twisted graphene layers. Nature Phys. 6, 109–113 (2010)
    ADS Google Scholar
  79. Decker, R. et al. Local electronic properties of graphene on a BN substrate via scanning tunneling microscopy. Nano Lett. 11, 2291–2295 (2011)
    ADS CAS PubMed Google Scholar
  80. Yankowitz, M. et al. Emergence of superlattice Dirac points in graphene on hexagonal boron nitride. Nature Phys. 8, 382–386 (2012)
    ADS CAS Google Scholar
  81. Dean, C. R. et al. Hofstadter’s butterfly and fractal quantum Hall effect in moiré superlattices. Nature 497, 598–602 (2013)
    ADS CAS PubMed Google Scholar
  82. Kośmider, K. & Fernández-Rossier, J. Electronic properties of the MoS2-WS2 heterojunction. Phys. Rev. B 87, 075451 (2013)
    ADS Google Scholar
  83. Kim, K., Choi, J. Y., Kim, T., Cho, S. H. & Chung, H. J. A role for graphene in silicon-based semiconductor devices. Nature 479, 338–344 (2011)
    ADS CAS PubMed Google Scholar
  84. Tanaka, T., Ito, A., Tajiima, A., Rokuta, E. & Oshima, C. Heteroepitaxial film of monolayer graphene/monolayer h-BN on Ni(111). Surf. Rev. Lett. 10, 721–726 (2003)
    ADS CAS Google Scholar
  85. Yan, Z. et al. Growth of bilayer graphene on insulating substrates. ACS Nano 5, 8187–8192 (2011)
    CAS PubMed Google Scholar
  86. Liu, Z. et al. Direct growth of graphene/hexagonal boron nitride stacked layers. Nano Lett. 11, 2032–2037 (2011)
    ADS CAS PubMed Google Scholar
  87. Garcia, J. M. et al. Graphene growth on h-BN by molecular beam epitaxy. Solid State Commun. 152, 975–978 (2012)
    ADS CAS Google Scholar
  88. Shi, Y. et al. Van der Waals epitaxy of MoS2 layers using graphene as growth templates. Nano Lett. 12, 2784–2791 (2012)
    ADS CAS PubMed Google Scholar
  89. Koma, A. Van der Waals epitaxy—a new epitaxial growth method for a highly lattice-mismatched system. Thin Solid Films 216, 72–76 (1992)
    ADS CAS Google Scholar
  90. Ariga, K., Ji, Q., Hill, J. P., Bando, Y. & Aono, M. Forming nanomaterials as layered functional structures toward materials nanoarchitectonics. NPG Asia Mater. 4 e17 10.1038/am.2012.30 (2012)
    Article CAS Google Scholar
  91. Nair, R. R., Wu, H. A., Jayaram, P. N., Grigorieva, I. V. & Geim, A. K. Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science 335, 442–444 (2012)
    ADS CAS PubMed Google Scholar
  92. Young, R. J., Kinloch, I. A., Gong, L. & Novoselov, K. S. The mechanics of graphene nanocomposites: a review. Compos. Sci. Technol. 72, 1459–1476 (2012)
    CAS Google Scholar

Download references