Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nature Nanotechnol.5, 722–726 (2010)This paper attracted attention to hBN as a substrate and initiated the development of transfer techniques essential for the van der Waals reassembly. ADSCAS Google Scholar
Mayorov, A. S. et al. Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Lett.11, 2396–2399 (2011) ADSCASPubMed Google Scholar
Mayorov, A. S. et al. How close can one approach the Dirac point in graphene experimentally? Nano Lett.12, 4629–4634 (2012) ADSCASPubMed Google Scholar
Bao, W. et al. Evidence for a spontaneous gapped state in ultraclean bilayer graphene. Proc. Natl Acad. Sci. USA109, 10802–10805 (2012) ADSCASPubMedPubMed Central Google Scholar
Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA102, 10451–10453 (2005)This was the first paper to demonstrate the electric field effect and study electron transport in 2D crystals other than graphene. ADSCASPubMedPubMed Central Google Scholar
Mas-Ballesté, R., Gómez-Navarro, C., Gómez-Herrero, J. & Zamora, F. 2D materials: to graphene and beyond. Nanoscale3, 20–30 (2011) ADSPubMed Google Scholar
Osada, M. & Sasaki, T. Two-dimensional dielectric nanosheets: novel nanoelectronics from nanocrystal building blocks. Adv. Mater.24, 210–228 (2012) CASPubMed Google Scholar
Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnol.7, 699–712 (2012) ADSCAS Google Scholar
Xu, M., Lian, T., Shi, M. & Chen, H. Graphene-like two-dimensional materials. Chem. Rev.113, 3766–3798 (2013)We recommend this review for initial acquaintance with 2D materials other than graphene. CASPubMed Google Scholar
Butler, S. Z. et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano7, 2898–2926 (2013) CASPubMed Google Scholar
Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nature Nanotechnol.6, 147–150 (2011)The paper attracted critical attention to electron transport in MoS2monolayers. ADSCAS Google Scholar
Fuhrer, M. S. & Hone, J. Measurement of mobility in dual-gated MoS2 transistors. Nature Nanotechnol.8, 146–147 (2013) ADSCAS Google Scholar
Ponomarenko, L. A. et al. Tunable metal–insulator transition in double-layer graphene heterostructures. Nature Phys.7, 958–961 (2011)This is the first demonstration of multilayer van der Waals heterostructures, beyond using hBN, mica and so on as a substrate. ADSCAS Google Scholar
Britnell, L. et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science335, 947–950 (2012) ADSCASPubMed Google Scholar
Haigh, S. J. et al. Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices. Nature Mater.11, 764–767 (2012)The paper proves the concept of complex heterostructures, including manually assembled van der Waals superlattices, and shows that their interfaces can be atomically sharp and clean. ADSCAS Google Scholar
Dean, C. R. et al. Graphene based heterostructures. Solid State Commun.152, 1275–1282 (2012) ADSCAS Google Scholar
Gorbachev, R. V. et al. Strong Coulomb drag and broken symmetry in double-layer graphene. Nature Phys.8, 896–901 (2012) ADSCAS Google Scholar
Georgiou, T. et al. Vertical field-effect transistor based on graphene–WS2 heterostructures for flexible and transparent electronics. Nature Nanotechnol.8, 100–103 (2013) ADSCAS Google Scholar
Kastner, M. A., Birgeneau, R. J., Shirane, G. & Endoh, Y. Magnetic, transport, and optical properties of monolayer copper oxides. Rev. Mod. Phys.70, 897–928 (1998) ADSCAS Google Scholar
Orenstein, J. & Millis, A. J. Advances in the physics of high-temperature superconductivity. Science288, 468–474 (2000) ADSCASPubMed Google Scholar
Weller, T. E., Ellerby, M., Saxena, S. S., Smith, R. P. & Skipper, N. T. Superconductivity in the intercalated graphite compounds C6Yb and C6Ca. Nature Phys.1, 39–41 (2005) ADSCAS Google Scholar
Profeta, G., Calandra, M. & Mauri, F. Phonon-mediated superconductivity in graphene by lithium deposition. Nature Phys.8, 131–134 (2012) ADSCAS Google Scholar
Nandkishore, R., Levitov, L. S. & Chubukov, A. V. Chiral superconductivity from repulsive interactions in doped graphene. Nature Phys.8, 158–163 (2012) ADSCAS Google Scholar
Savini, G., Ferrari, A. C. & Giustino, F. First-principles prediction of doped graphane as a high-temperature electron-phonon superconductor. Phys. Rev. Lett.105, 037002 (2010) ADSCASPubMed Google Scholar
Guinea, F. & Uchoa, B. Odd-momentum pairing and superconductivity in vertical graphene heterostructures. Phys. Rev. B86, 134521 (2012) ADS Google Scholar
Min, H., Bistritzer, R., Su, J. J. & MacDonald, A. H. Room-temperature superfluidity in graphene bilayers. Phys. Rev. B78, 121401 (2008) ADS Google Scholar
Perali, A., Neilson, D. & Hamilton, A. R. High-temperature superfluidity in double-bilayer graphene. Phys. Rev. Lett.110, 146803 (2013) ADSCASPubMed Google Scholar
Geim, A. K. Random walk to graphene. Rev. Mod. Phys.83, 851–862 (2011) ADSCAS Google Scholar
Liu, L. et al. Graphene oxidation: thickness-dependent etching and strong chemical doping. Nano Lett.8, 1965–1970 (2008) ADSCASPubMed Google Scholar
Elias, D. C. et al. Control of graphene’s properties by reversible hydrogenation: evidence for graphane. Science323, 610–613 (2009) ADSCASPubMed Google Scholar
Ross, S. & Sussman, A. Surface oxidation of molybdenum disulfide. J. Phys. Chem.59, 889–892 (1955) CAS Google Scholar
Vogt, P. et al. Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. Phys. Rev. Lett.108, 155501 (2012) ADSPubMed Google Scholar
Fleurence, A. et al. Experimental evidence for epitaxial silicene on diboride thin films. Phys. Rev. Lett.108, 245501 (2012) ADSPubMed Google Scholar
Lui, C. H., Liu, L., Mak, K. F., Flynn, G. W. & Heinz, T. F. Ultraflat graphene. Nature462, 339–341 (2009) ADSCASPubMed Google Scholar
Taychatanapat, T., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Electrically tunable transverse magnetic focusing in graphene. Nature Phys.9, 225–229 (2013) ADSCAS Google Scholar
Watanabe, K., Taniguchi, T. & Kanda, H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nature Mater.3, 404–409 (2004) ADSCAS Google Scholar
Zomer, P. J., Dash, S. P., Tombros, N. & van Wees, B. J. A transfer technique for high mobility graphene devices on commercially available hexagonal boron nitride. Appl. Phys. Lett.99, 232104 (2011) ADS Google Scholar
Meric, I. et al. Graphene field-effect transistors based on boron nitride gate dielectrics. Tech. Digest Int. Electron Devices Meet. 2010 IEEE Int.10 556–559 10.1109/IEDM.2010.5703419 (2010) Article Google Scholar
Lee, G. H. et al. Electron tunneling through atomically flat and ultrathin hexagonal boron nitride. Appl. Phys. Lett.99, 243114 (2011) ADS Google Scholar
Britnell, L. et al. Electron tunneling through ultrathin boron nitride crystalline barriers. Nano Lett.12, 1707–1710 (2012) ADSCASPubMed Google Scholar
Gordon, R. A., Yang, D., Crozier, E. D., Jiang, D. T. & Frindt, R. F. Structures of exfoliated single layers of WS2, MoS2, and MoSe2 in aqueous suspension. Phys. Rev. B65, 125407 (2002) ADS Google Scholar
Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2 . Nano Lett.10, 1271–1275 (2010) ADSCASPubMed Google Scholar
Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett.105, 136805 (2010) ADSPubMed Google Scholar
Zeng, H., Dai, J., Yao, W., Xiao, D. & Cui, X. Valley polarization in MoS2 monolayers by optical pumping. Nature Nanotechnol.7, 490–493 (2012) ADSCAS Google Scholar
Mak, K. F., He, K., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nature Nanotechnol.7, 494–498 (2012) ADSCAS Google Scholar
Fang, H. et al. High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Lett.12, 3788–3792 (2012) ADSCASPubMed Google Scholar
Zhao, W. et al. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2 . ACS Nano7, 791–797 (2013) CASPubMed Google Scholar
Tonndorf, P. et al. Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2 . Opt. Express21, 4908–4916 (2013) ADSCASPubMed Google Scholar
Nair, R. R. et al. Fluorographene: a two-dimensional counterpart of Teflon. Small6, 2877–2884 (2010) CASPubMed Google Scholar
Bianco, E. et al. Stability and exfoliation of germanane: a germanium graphane analogue. ACS Nano7, 4414–4421 (2013) CASPubMed Google Scholar
Park, S. & Ruoff, R. S. Chemical methods for the production of graphenes. Nature Nanotechnol.4, 217–224 (2009) ADSCAS Google Scholar
Jin, Z., Yao, J., Kittrell, C. & Tour, J. M. Large-scale growth and characterizations of nitrogen-doped monolayer graphene sheets. ACS Nano5, 4112–4117 (2011) CASPubMed Google Scholar
Ci, L. et al. Atomic layers of hybridized boron nitride and graphene domains. Nature Mater.9, 430–435 (2010) ADSCAS Google Scholar
Gamble, F. R. et al. Intercalation complexes of Lewis bases and layered sulfides: a large class of new superconductors. Science174, 493–497 (1971) ADSCASPubMed Google Scholar
Coleman, J. N. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science331, 568–571 (2011) ADSCASPubMed Google Scholar
Addou, R., Dahal, A. & Batzill, M. Growth of a two-dimensional dielectric monolayer on quasi-freestanding graphene. Nature Nanotechnol.8, 41–45 (2013) ADSCAS Google Scholar
Tusche, C., Meyerheim, H. L. & Kirschner, J. Observation of depolarized ZnO(0001) monolayers: formation of unreconstructed planar sheets. Phys. Rev. Lett.99, 026102 (2007) ADSCASPubMed Google Scholar
Reina, A. et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett.9, 30–35 (2009) ADSCASPubMed Google Scholar
Li, X. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science324, 1312–1314 (2009) ADSCASPubMed Google Scholar
Bae, S. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnol.5, 574–578 (2010) ADSCAS Google Scholar
Song, L. et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett.10, 3209–3215 (2010) ADSCASPubMed Google Scholar
Kim, K. K. et al. Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition. Nano Lett.12, 161–166 (2012) ADSPubMed Google Scholar
Bresnehan, M. S. et al. Integration of hexagonal boron nitride with quasi-freestanding epitaxial graphene: toward wafer-scale, high-performance devices. ACS Nano6, 5234–5241 (2012) CASPubMed Google Scholar
Bertolazzi, S., Krasnozhon, D. & Kis, A. Nonvolatile memory cells based on MoS2/graphene heterostructures. ACS Nano7, 3246–3252 (2013) CASPubMed Google Scholar
Hunt, B. et al. Massive Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure. Science340, 1427–1430 (2013) ADSCASPubMed Google Scholar
Ponomarenko, L. A. et al. Effect of a high-kappa environment on charge carrier mobility in graphene. Phys. Rev. Lett.102, 206603 (2009) ADSCASPubMed Google Scholar
Yu, G. L. et al. Interaction phenomena in graphene seen through quantum capacitance. Proc. Natl Acad. Sci. USA110, 3282–3286 (2013) ADSCASPubMedPubMed Central Google Scholar
Yang, H. et al. Graphene barristor, a triode device with a gate-controlled Schottky barrier. Science336, 1140–1143 (2012) ADSCASPubMed Google Scholar
Kotov, V. N., Pereira, V. M., Castro Neto, A. H. & Guinea, F. Electron–electron interactions in graphene: current status and perspectives. Rev. Mod. Phys.84, 1067–1125 (2012) ADSCAS Google Scholar
Das Sarma, S., Adam, S., Hwang, E. H. & Rossi, E. Electronic transport in two dimensional graphene. Rev. Mod. Phys.83, 407–470 (2011) ADSCAS Google Scholar
McChesney, J. L. et al. Extended van Hove singularity and superconducting instability in doped graphene. Phys. Rev. Lett.104, 136803 (2010) ADSCASPubMed Google Scholar
Tutuc, E. & Kim, S. Magnetotransport and Coulomb drag in graphene double layers. Solid State Commun.15, 1283–1288 (2012) Google Scholar
Eisenstein, J. P. & MacDonald, A. H. Bose–Einstein condensation of excitons in bilayer electron systems. Nature432, 691–694 (2004) ADSCASPubMed Google Scholar
Nandi, D., Finck, A. D. K., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Exciton condensation and perfect Coulomb drag. Nature488, 481–484 (2012) ADSCASPubMed Google Scholar
Ponomarenko, L. A. et al. Cloning of Dirac fermions in graphene superlattices. Nature497, 594–597 (2013) ADSCASPubMed Google Scholar
Björkman, T., Gulans, A., Krasheninnikov, A. V. & Nieminen, R. M. van der Waals bonding in layered compounds from advanced density-functional first-principles calculations. Phys. Rev. Lett.108, 235502 (2012) ADSPubMed Google Scholar
Li, G. et al. Observation of Van Hove singularities in twisted graphene layers. Nature Phys.6, 109–113 (2010) ADS Google Scholar
Decker, R. et al. Local electronic properties of graphene on a BN substrate via scanning tunneling microscopy. Nano Lett.11, 2291–2295 (2011) ADSCASPubMed Google Scholar
Yankowitz, M. et al. Emergence of superlattice Dirac points in graphene on hexagonal boron nitride. Nature Phys.8, 382–386 (2012) ADSCAS Google Scholar
Dean, C. R. et al. Hofstadter’s butterfly and fractal quantum Hall effect in moiré superlattices. Nature497, 598–602 (2013) ADSCASPubMed Google Scholar
Kośmider, K. & Fernández-Rossier, J. Electronic properties of the MoS2-WS2 heterojunction. Phys. Rev. B87, 075451 (2013) ADS Google Scholar
Kim, K., Choi, J. Y., Kim, T., Cho, S. H. & Chung, H. J. A role for graphene in silicon-based semiconductor devices. Nature479, 338–344 (2011) ADSCASPubMed Google Scholar
Tanaka, T., Ito, A., Tajiima, A., Rokuta, E. & Oshima, C. Heteroepitaxial film of monolayer graphene/monolayer h-BN on Ni(111). Surf. Rev. Lett.10, 721–726 (2003) ADSCAS Google Scholar
Yan, Z. et al. Growth of bilayer graphene on insulating substrates. ACS Nano5, 8187–8192 (2011) CASPubMed Google Scholar
Liu, Z. et al. Direct growth of graphene/hexagonal boron nitride stacked layers. Nano Lett.11, 2032–2037 (2011) ADSCASPubMed Google Scholar
Garcia, J. M. et al. Graphene growth on h-BN by molecular beam epitaxy. Solid State Commun.152, 975–978 (2012) ADSCAS Google Scholar
Shi, Y. et al. Van der Waals epitaxy of MoS2 layers using graphene as growth templates. Nano Lett.12, 2784–2791 (2012) ADSCASPubMed Google Scholar
Koma, A. Van der Waals epitaxy—a new epitaxial growth method for a highly lattice-mismatched system. Thin Solid Films216, 72–76 (1992) ADSCAS Google Scholar
Ariga, K., Ji, Q., Hill, J. P., Bando, Y. & Aono, M. Forming nanomaterials as layered functional structures toward materials nanoarchitectonics. NPG Asia Mater.4 e17 10.1038/am.2012.30 (2012) ArticleCAS Google Scholar
Nair, R. R., Wu, H. A., Jayaram, P. N., Grigorieva, I. V. & Geim, A. K. Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science335, 442–444 (2012) ADSCASPubMed Google Scholar
Young, R. J., Kinloch, I. A., Gong, L. & Novoselov, K. S. The mechanics of graphene nanocomposites: a review. Compos. Sci. Technol.72, 1459–1476 (2012) CAS Google Scholar