A visual motion detection circuit suggested by Drosophila connectomics (original) (raw)
References
Heisenberg, M. & Wolf, R. Vision in Drosophila. Genetics of Microbehaviour (Springer Verlag, 1984) Google Scholar
Laughlin, S. B. Matching coding, circuits, cells, and molecules to signals: General principles of retinal design in the fly’s eye. Prog. Retin. Eye Res.13, 165–196 (1994) CAS Google Scholar
Strausfeld, N. J. & Nässel, D. R. in Handbook of Sensory Physiology (eds Autrum, H. et al.) 1–132 (Springer-Verlag, 1981) Google Scholar
Hassenstein, B. & Reichardt, W. Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus. Z. Naturforsch. B11, 513–524 (1956) Google Scholar
Reichardt, W. in Sensory Communication (ed. Rosenblith, W. A. ) 303–317 (MIT Press, 1961) Google Scholar
Barlow, H. B. & Levick, W. R. The mechanism of directionally selective units in rabbit's retina. J. Physiol. (Lond.)178, 477–504 (1965) CAS Google Scholar
Borst, A., Haag, J. & Reiff, D. F. Fly motion vision. Annu. Rev. Neurosci.33, 49–70 (2010) CASPubMed Google Scholar
Rivera-Alba, M. et al. Wiring economy and volume exclusion determine neuronal placement in the Drosophila brain. Curr. Biol.21, 2000–2005 (2011) CASPubMedPubMed Central Google Scholar
Meinertzhagen, I. A. & Sorra, K. E. Synaptic organization in the fly’s optic lamina: few cells, many synapses and divergent microcircuits. Prog. Brain Res.131, 53–69 (2001) CASPubMed Google Scholar
Takemura, S. Y., Lu, Z. & Meinertzhagen, I. A. Synaptic circuits of the Drosophila optic lobe: the input terminals to the medulla. J. Comp. Neurol.509, 493–513 (2008) PubMedPubMed Central Google Scholar
Buchner, E., Buchner, S. & Bülthoff, I. Deoxyglucose mapping of nervous activity induced in Drosophila brain by visual movement. J. Comp. Physiol. A155, 471–483 (1984) Google Scholar
Krapp, H. G. & Hengstenberg, R. Estimation of self-motion by optic flow processing in single visual interneurons. Nature384, 463–466 (1996) ADSCASPubMed Google Scholar
Joesch, M., Plett, J., Borst, A. & Reiff, D. F. Response properties of motion-sensitive visual interneurons in the lobula plate of Drosophila melanogaster. Curr. Biol.18, 368–374 (2008) CASPubMed Google Scholar
White, J. G., Southgate, E., Thomson, J. N. & Brenner, S. The structure of the nervous system of the nematode Caenorhabditis elegans. Phil. Trans. R. Soc. Lond. B314, 1–340 (1986) ADSCAS Google Scholar
Kirschfeld, K. in Information Processing in the Visual System of Arthropods (ed. Wehner, R. ) 61–74 (Springer Verlag, 1972) Google Scholar
Riehle, A. & Franceschini, N. Motion detection in flies: parametric control over ON–OFF pathways. Exp. Brain Res.54, 390–394 (1984) CASPubMed Google Scholar
Schuling, F. H., Mastebroek, H. A. K., Bult, R. & Lenting, B. P. M. Properties of elementary movement detectors in the fly Calliphora erythrocephala. J. Comp. Physiol. A165, 179–192 (1989) Google Scholar
Helmstaedter, M., Briggman, K. L. & Denk, W. 3D structural imaging of the brain with photons and electrons. Curr. Opin. Neurobiol.18, 633–641 (2008) CASPubMed Google Scholar
Chklovskii, D. B., Vitaladevuni, S. & Scheffer, L. K. Semi-automated reconstruction of neural circuits using electron microscopy. Curr. Opin. Neurobiol.20, 667–675 (2010) CASPubMed Google Scholar
Fischbach, K.-F. & Dittrich, A. P. M. The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure. Cell Tissue Res.258, 441–475 (1989) Google Scholar
Song, S., Sjöström, P. J., Reigl, M., Nelson, S. & Chklovskii, D. B. Highly nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biol.3, e68 (2005) PubMedPubMed Central Google Scholar
Varshney, L. R., Chen, B. L., Paniagua, E., Hall, D. H. & Chklovskii, D. B. Structural properties of the Caenorhabditis elegans neuronal network. PLOS Comput. Biol.7, e1001066 (2011) ADSCASPubMedPubMed Central Google Scholar
Campos-Ortega, J. A. & Strausfeld, N. J. in Information Processing in the Visual Systems of Arthropods (ed. Wehner, R. ) 31–36 (Springer Verlag, 1972) Google Scholar
Franceschini, N., Kirschfeld, K. & Minke, B. Fluorescence of photoreceptor cells observed in vivo. Science213, 1264–1267 (1981) ADSCASPubMed Google Scholar
Douglass, J. K. & Strausfeld, N. J. Anatomical organization of retinotopic motion—sensitive pathways in the optic lobes of flies. Microsc. Res. Tech.62, 132–150 (2003) PubMed Google Scholar
Bausenwein, B., Dittrich, A. P. & Fischbach, K. F. The optic lobe of Drosophila melanogaster. II. Sorting of retinotopic pathways in the medulla. Cell Tissue Res.267, 17–28 (1992) CASPubMed Google Scholar
Bausenwein, B. & Fischbach, K. F. Activity labeling patterns in the medulla of Drosophila melanogaster caused by motion stimuli. Cell Tissue Res.270, 25–35 (1992) CASPubMed Google Scholar
Strausfeld, N. J. & Lee, J. K. Neuronal basis for parallel visual processing in the fly. Vis. Neurosci.7, 13–33 (1991) CASPubMed Google Scholar
Clark, D. A., Bursztyn, L., Horowitz, M. A., Schnitzer, M. J. & Clandinin, T. R. Defining the computational structure of the motion detector in Drosophila. Neuron70, 1165–1177 (2011) CASPubMedPubMed Central Google Scholar
Joesch, M., Schnell, B., Raghu, S. V., Reiff, D. F. & Borst, A. ON and OFF pathways in Drosophila motion vision. Nature468, 300–304 (2010) ADSCASPubMed Google Scholar
Rister, J. et al. Dissection of the peripheral motion channel in the visual system of Drosophila melanogaster. Neuron56, 155–170 (2007) CASPubMed Google Scholar
Schnell, B., Raghu, S. V., Nern, A. & Borst, A. Columnar cells necessary for motion responses of wide-field visual interneurons in Drosophila. J. Comp. Physiol. A198, 389–395 (2012) Google Scholar
Tuthill, J. C., Nern, A., Rubin, G. M. & Reiser, M. B. Contributions of the 12 neuron classes in the fly lamina to motion vision. Neuron79, 128–140 (2013) CASPubMedPubMed Central Google Scholar
Douglass, J. K. & Strausfeld, N. J. Visual motion-detection circuits in flies: parallel direction-and non-direction-sensitive pathways between the medulla and lobula plate. J. Neurosci.16, 4551–4562 (1996) CASPubMedPubMed Central Google Scholar
Srinivasan, M. & Dvorak, D. Spatial processing of visual information in the movement-detecting pathway of the fly. J. Comp. Physiol. A140, 1–23 (1980) Google Scholar
Haag, J. & Borst, A. Recurrent network interactions underlying flow-field selectivity of visual interneurons. J. Neurosci.21, 5685–5692 (2001) CASPubMedPubMed Central Google Scholar
Gouwens, N. W. & Wilson, R. I. Signal propagation in Drosophila central neurons. J. Neurosci.29, 6239–6249 (2009) CASPubMedPubMed Central Google Scholar
Ashmore, J. F. & Copenhagen, D. R. Different postsynaptic events in two types of retinal bipolar cell. Nature288, 84–86 (1980) ADSCASPubMed Google Scholar
Mizunami, M. Synaptic rectification model equivalent to the correlation-type movement detector. Biol. Cybern.64, 1–6 (1990) CASPubMed Google Scholar
Oyster, C. W. & Barlow, H. B. Direction-selective units in rabbit retina: distribution of preferred directions. Science155, 841–842 (1967) ADSCASPubMed Google Scholar
Kim, I.-J., Zhang, Y., Yamagata, M., Meister, M. & Sanes, J. R. Molecular identification of a retinal cell type that responds to upward motion. Nature452, 478–482 (2008) ADSCASPubMed Google Scholar
Euler, T., Detwiler, P. B. & Denk, W. Directionally selective calcium signals in dendrites of starburst amacrine cells. Nature418, 845–852 (2002) ADSCASPubMed Google Scholar
Briggman, K. L., Helmstaedter, M. & Denk, W. Wiring specificity in the direction-selectivity circuit of the retina. Nature471, 183–188 (2011) ADSCASPubMed Google Scholar
Meinertzhagen, I. & Hanson, T. in The Development of Drosophila Melanogaster Vol. 2 (eds Bate, M. & Martinez Arias, A. ) 1363–1491 (Cold Spring Harbor Laboratory Press, 1993) Google Scholar
Blondel, V. D., Guillaume, J. L., Lambiotte, R. & Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech.2008, P10008 (2008) MATH Google Scholar
Eck, N. & Waltman, L. VOS: a new method for visualizing similarities between objects. Adv. Data Anal. 299–306 (2007)
Scheffer, L., Karsh, B. & Vitaladevuni, S. Automated alignment of imperfect EM images for neural reconstruction. Preprint at http://arXiv.org/abs/1304.6034 (2013)
Canny, J. A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell.PAMI-8, 679–698 (1986) Google Scholar
Martin, D. R., Fowlkes, C. C. & Malik, J. Learning to detect natural image boundaries using local brightness, color, and texture cues. IEEE Trans. Pattern Anal. Mach. Intell.26, 530–549 (2004) PubMed Google Scholar
Soille, P. Morphological Image Analysis: Principles and Applications 2nd edn, 316 (Springer-Verlag New York, 2003) MATH Google Scholar
Dollar, P., Tu, Z. & Belongie, S. Supervised learning of edges and object boundaries. IEEE Comp. Soc. Conf. Comp. Vis. Pattern Rec.2, 1964–1971 (2006) Google Scholar
Vincent, L. & Soille, P. Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans. Pattern Anal. Mach. Intell.13, 583–598 (1991) Google Scholar
Mohanta, P. P., Mukherjee, D. P. & Acton, S. T. Agglomerative clustering for image segmentation. Int. Conf. Pattern Rec.1, 664–667 (2002) Google Scholar
Vitaladevuni, S. N. & Basri, R. Co-clustering of image segments using convex optimization applied to EM neuronal reconstruction. IEEE Comp. Soc. Conf. Comp. Vis. Patt. Rec.. http://dx.doi.org/10.1109/CVPR.2010.5539901 2203–2210 (2010)
Kasai, H., Matsuzaki, M., Noguchi, J., Yasumatsu, N. & Nakahara, H. Structure–stability–function relationships of dendritic spines. Trends Neurosci.26, 360–368 (2003) CASPubMed Google Scholar
Sato, M., Bitter, I., Bender, M. A., Kaufman, A. E. & Nakajima, M. TEASAR: Tree-structure extraction algorithm for accurate and robust skeletons. Eighth Pac. Conf. Comp. Graphics Appl.. http://dx.doi.org/10.1109/PCCGA.2000.883951 281–287, 449 (2000)