Influence of tumour micro-environment heterogeneity on therapeutic response (original) (raw)
Hanahan, D. & Coussens, L. M. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell21, 309–322 (2012). CASPubMed Google Scholar
Egeblad, M., Nakasone, E. S. & Werb, Z. Tumors as organs: complex tissues that interface with the entire organism. Dev. Cell18, 884–901 (2010). CASPubMedPubMed Central Google Scholar
Dotto, G. P., Weinberg, R. A. & Ariza, A. Malignant transformation of mouse primary keratinocytes by Harvey sarcoma virus and its modulation by surrounding normal cells. Proc. Natl Acad. Sci. USA85, 6389–6393 (1988). ADSCASPubMedPubMed Central Google Scholar
Orimo, A. et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell121, 335–348 (2005). CASPubMed Google Scholar
Polanska, U. M. & Orimo, A. Carcinoma-associated fibroblasts: non-neoplastic tumour-promoting mesenchymal cells. J. Cell. Physiol.8, 1651–1657 (2013). Google Scholar
Rinn, J. L., Bondre, C., Gladstone, H. B., Brown, P. O. & Chang, H. Y. Anatomic demarcation by positional variation in fibroblast gene expression programs. PLoS Genet.2, e119 (2006). PubMedPubMed Central Google Scholar
Rudnick, J. A. et al. Functional heterogeneity of breast fibroblasts is defined by a prostaglandin secretory phenotype that promotes expansion of cancer-stem like cells. PLoS ONE6, e24605 (2011). ADSCASPubMedPubMed Central Google Scholar
Bergers, G. et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nature Cell Biol.2, 737–744 (2000). CASPubMed Google Scholar
Quante, M. et al. Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell19, 257–272 (2011). CASPubMedPubMed Central Google Scholar
Yamashita, M. et al. Role of stromal myofibroblasts in invasive breast cancer: stromal expression of alpha-smooth muscle actin correlates with worse clinical outcome. Breast Cancer19, 170–176 (2012). PubMed Google Scholar
Fujita, H. et al. α-Smooth muscle actin expressing stroma promotes an aggressive tumor biology in pancreatic ductal adenocarcinoma. Pancreas39, 1254–1262 (2010). CASPubMed Google Scholar
Vihinen, P. & Kähäri, V.-M. Matrix metalloproteinases in cancer: prognostic markers and therapeutic targets. Int. J. Cancer99, 157–166 (2002). CASPubMed Google Scholar
Calle, E. E. & Kaaks, R. R. Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nature Rev. Cancer4, 579–591 (2004). CAS Google Scholar
Ferrara, N. & Kerbel, R. S. Angiogenesis as a therapeutic target. Nature438, 967–974 (2005). ADSCASPubMed Google Scholar
Kalluri, R. Basement membranes: structure, assembly and role in tumour angiogenesis. Nature Rev. Cancer3, 422–433 (2003). CAS Google Scholar
Rosenberg, R. D. & Aird, W. C. Vascular-bed–specific hemostasis and hypercoagulable states. N. Engl. J. Med.340, 1555–1564 (1999). CASPubMed Google Scholar
Trédan, O., Galmarini, C. M., Patel, K. & Tannock, I. F. Drug resistance and the solid tumor microenvironment. J. Natl Cancer Inst.99, 1441–1454 (2007). PubMed Google Scholar
Meert, A.-P. et al. The role of microvessel density on the survival of patients with lung cancer: a systematic review of the literature with meta-analysis. Br. J. Cancer87, 694–701 (2002). PubMedPubMed Central Google Scholar
Des Guetz, G. et al. Microvessel density and VEGF expression are prognostic factors in colorectal cancer. Meta-analysis of the literature. Br. J. Cancer94, 1823–1832 (2006). CASPubMedPubMed Central Google Scholar
Uzzan, B., Nicolas, P., Cucherat, M. & Perret, G.-Y. Microvessel density as a prognostic factor in women with breast cancer: a systematic review of the literature and meta-analysis. Cancer Res.64, 2941–2955 (2004). CASPubMed Google Scholar
Hegde, P. S. et al. Predictive impact of circulating vascular endothelial growth factor in 4 phase III trials evaluating bevacizumab. Clin. Cancer Res.19, 929–937 (2013). CASPubMed Google Scholar
Fridman, W.-H., Pagès, F., Sautès-Fridman, C. & Galon, J. The immune contexture in human tumours: impact on clinical outcome. Nature Rev. Cancer12, 298–306 (2012). CASPubMed Google Scholar
Buckanovich, R. J. et al. Endothelin B receptor mediates the endothelial barrier to T cell homing to tumors and disables immune therapy. Nature Med.14, 28–36 (2008). CASPubMed Google Scholar
Pardoll, D. M. The blockade of immune checkpoints in cancer immunotherapy. Nature Rev. Cancer12, 252–264 (2012). CAS Google Scholar
Yang, L. et al. Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell6, 409–421 (2004). CASPubMed Google Scholar
Shojaei, F. et al. G-CSF-initiated myeloid cell mobilization and angiogenesis mediate tumor refractoriness to anti-VEGF therapy in mouse models. Proc. Natl Acad. Sci. USA106, 6742–6747 (2009). ADSCASPubMedPubMed Central Google Scholar
Pylayeva-Gupta, Y., Lee, K. E., Hajdu, C. H., Miller, G. & Bar-Sagi, D. Oncogenic Kras-induced GM-CSF production promotes the development of pancreatic neoplasia. Cancer Cell21, 836–847 (2012). CASPubMedPubMed Central Google Scholar
Bayne, L. J. et al. Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer. Cancer Cell21, 822–835 (2012). CASPubMedPubMed Central Google Scholar
Motz, G. T. & Coukos, G. The parallel lives of angiogenesis and immunosuppression: cancer and other tales. Nature Rev. Immunol.11, 702–711 (2011). CAS Google Scholar
Gabrilovich, D. I., Ostrand-Rosenberg, S. S. & Bronte, V. V. Coordinated regulation of myeloid cells by tumours. Nature Rev. Immunol.12, 253–268 (2012). CAS Google Scholar
Nelson, B. H. CD20+ B cells: the other tumor-infiltrating lymphocytes. J. Immunol.185, 4977–4982 (2010). CASPubMed Google Scholar
de Visser, K. E., Korets, L. V. & Coussens, L. M. De novo carcinogenesis promoted by chronic inflammation is B lymphocyte dependent. Cancer Cell7, 411–423 (2005). CASPubMed Google Scholar
Ammirante, M., Luo, J.-L., Grivennikov, S., Nedospasov, S. & Karin, M. B-cell-derived lymphotoxin promotes castration-resistant prostate cancer. Nature464, 302–305 (2010). ADSCASPubMedPubMed Central Google Scholar
Coussens, L. M. et al. Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes Dev.13, 1382–1397 (1999). CASPubMedPubMed Central Google Scholar
Yang, F.-C. et al. _Nf1_-dependent tumors require a microenvironment containing Nf1+/−- and c-kit-dependent bone marrow. Cell135, 437–448 (2008). CASPubMedPubMed Central Google Scholar
Mantovani, A. & Sica, A. A. Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr. Opin. Immunol.22, 231–237 (2010). CASPubMed Google Scholar
Finak, G. et al. Stromal gene expression predicts clinical outcome in breast cancer. Nature Med.14, 518–527 (2008). CASPubMed Google Scholar
Tosolini, M. et al. Clinical impact of different classes of infiltrating T cytotoxic and helper cells (Th1, Hh2, Treg, Th17) in patients with colorectal cancer. Cancer Res.71, 1263–1271 (2011). CASPubMed Google Scholar
DeNardo, D. G. et al. Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov.1, 54–67 (2011). CASPubMedPubMed Central Google Scholar
Nielsen, J. S. et al. CD20+ tumor-infiltrating lymphocytes have an atypical CD27− memory phenotype and together with CD8+ T cells promote favorable prognosis in ovarian cancer. Clin. Cancer Res.18, 3281–3292 (2012). CASPubMed Google Scholar
Schmidt, M. et al. The humoral immune system has a key prognostic impact in node-negative breast cancer. Cancer Res.68, 5405–5413 (2008). CASPubMed Google Scholar
Chapman, P. B. et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N. Engl. J. Med.364, 2507–2516 (2011). CASPubMedPubMed Central Google Scholar
Wagle, N. et al. Dissecting therapeutic resistance to RAF inhibition in melanoma by tumor genomic profiling. J. Clin. Oncol.29, 3085–3096 (2011). CASPubMedPubMed Central Google Scholar
Kobayashi, S. et al. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N. Engl. J. Med.352, 786–792 (2005). CASPubMed Google Scholar
Engelman, J. A. et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science316, 1039–1043 (2007). ADSCASPubMed Google Scholar
Bean, J. et al. MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proc. Natl Acad. Sci. USA104, 20932–20937 (2007). ADSCASPubMedPubMed Central Google Scholar
Nazarian, R. et al. Melanomas acquire resistance to B-RAF (V600E) inhibition by RTK or N-RAS upregulation. Nature468, 973–977 (2010). ADSCASPubMedPubMed Central Google Scholar
Meads, M. B., Gatenby, R. A. & Dalton, W. S. Environment-mediated drug resistance: a major contributor to minimal residual disease. Nature Rev. Cancer9, 665–674 (2009). CAS Google Scholar
Barcellos-Hoff, M. H. & Ravani, S. A. Irradiated mammary gland stroma promotes the expression of tumorigenic potential by unirradiated epithelial cells. Cancer Res.60, 1254–1260 (2000). CASPubMed Google Scholar
Krtolica, A., Parrinello, S., Lockett, S., Desprez, P. Y. & Campisi, J. Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc. Natl Acad. Sci. USA98, 12072–12077 (2001). ADSCASPubMedPubMed Central Google Scholar
Ohuchida, K. et al. Radiation to stromal fibroblasts increases invasiveness of pancreatic cancer cells through tumor-stromal interactions. Cancer Res.64, 3215–3222 (2004). CASPubMed Google Scholar
Straussman, R. et al. Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature487, 500–504 (2012). The authors of this paper used co-cultures of tumour cells with fibroblast and stromal cell lines to screen for targeted therapy resistance, and identified secreted HFG as a mediator of resistance to BRAF inhibition in melanoma. ADSCASPubMedPubMed Central Google Scholar
Wilson, T. R. et al. Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors. Nature487, 505–509 (2012). This article describesin vitroscreening that illustrates the broad applicability of secreted growth factors as mediators of therapeutic resistance and identifies HFG as a mediator of therapeutic resistance to BRAF and HER2 inhibition. ADSCASPubMedPubMed Central Google Scholar
Crawford, Y. et al. PDGF-C mediates the angiogenic and tumorigenic properties of fibroblasts associated with tumors refractory to anti-VEGF treatment. Cancer Cell15, 21–34 (2009). CASPubMed Google Scholar
Sun, Y. et al. Treatment-induced damage to the tumor microenvironment promotes prostate cancer therapy resistance through WNT16B. Nature Med.18, 1359–1368 (2012). This article highlights the crucial effect that therapeutic treatment has on the tumour stroma, which can influence drug response and resistance. CASPubMed Google Scholar
Jain, R. K. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science307, 58–62 (2005). ADSCASPubMed Google Scholar
Provenzano, P. P. et al. Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell21, 418–429 (2012). CASPubMedPubMed Central Google Scholar
Van der Veldt, A. A. M. et al. Rapid decrease in delivery of chemotherapy to tumors after anti-VEGF therapy: implications for scheduling of anti-angiogenic drugs. Cancer Cell21, 82–91 (2012). CASPubMed Google Scholar
Gilbert, L. A. & Hemann, M. T. DNA damage-mediated induction of a chemoresistant niche. Cell143, 355–366 (2010). The authors of this article illustrate in an animal model how tissue responses to chemotherapy can create unique environmentsin vivothat support minimum residual disease and eventual cancer relapse. CASPubMedPubMed Central Google Scholar
Calabrese, C. et al. A perivascular niche for brain tumor stem cells. Cancer Cell11, 69–82 (2007). This paper describes a potential role for the vascular niche in harbouring cancer stem cells. CASPubMed Google Scholar
Krishnamurthy, S. et al. Endothelial cell-initiated signaling promotes the survival and self-renewal of cancer stem cells. Cancer Res.70, 9969–9978 (2010). CASPubMedPubMed Central Google Scholar
Lu, J. et al. Endothelial cells promote the colorectal cancer stem cell phenotype through a soluble form of Jagged-1. Cancer Cell23, 171–185 (2013). ADSCASPubMedPubMed Central Google Scholar
Mao, Q. et al. A tumor hypoxic niche protects human colon cancer stem cells from chemotherapy. J. Cancer Res. Clin. Oncol.139, 211–222 (2013). CASPubMed Google Scholar
Shojaei, F. et al. Tumor refractoriness to anti-VEGF treatment is mediated by CD11b+Gr1+ myeloid cells. Nature Biotechnol.25, 911–920 (2007). This article describes how infiltrating immunosuppressive cells can impede anti-VEGF therapeutic efficacy. CAS Google Scholar
Phan, V. T. et al. Oncogenic RAS pathway activation promotes resistance to anti-VEGF therapy through G-CSF-induced neutrophil recruitment. Proc. Natl Acad. Sci. USA110, 6079–6084 (2013). ADSCASPubMedPubMed Central Google Scholar
Xu, J. et al. CSF1R signaling blockade stanches tumor-infiltrating myeloid cells and improves the efficacy of radiotherapy in prostate cancer. Cancer Res.73, 2782–2794 (2013). CASPubMedPubMed Central Google Scholar
Frederick, D. T. et al. BRAF inhibition is associated with enhanced melanoma antigen expression and a more favorable tumor microenvironment in patients with metastatic melanoma. Clin. Cancer Res.19, 1225–1231 (2013). CASPubMedPubMed Central Google Scholar
Rosenberg, S. A., Restifo, N. P., Yang, J. C., Morgan, R. A. & Dudley, M. E. Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nature Rev. Cancer8, 299–308 (2008). CAS Google Scholar
Landsberg, J. et al. Melanomas resist T-cell therapy through inflammation-induced reversible dedifferentiation. Nature490, 412–416 (2012). This report implicates treatment-induced inflammation as the cause of therapeutic resistance against an immunotherapy. ADSCASPubMed Google Scholar
Coussens, L. M., Fingleton, B. & Matrisian, L. M. Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science295, 2387–2392 (2002). ADSCASPubMed Google Scholar
Michael, M. et al. Expression and prognostic significance of metalloproteinases and their tissue inhibitors in patients with small-cell lung cancer. J. Clin. Oncol.17, 1802–1808 (1999). CASPubMed Google Scholar
Theunissen, J.-W. & de Sauvage, F. J. Paracrine Hedgehog signaling in cancer. Cancer Res.69, 6007–6010 (2009). CASPubMed Google Scholar
Berlin, J. et al. A randomized phase II trial of vismodegib versus placebo with FOLFOX or FOLFIRI and bevacizumab in patients with previously untreated metastatic colorectal cancer. Clin. Cancer Res.19, 258–267 (2013). CASPubMed Google Scholar
Kaye, S. B. et al. A phase II, randomized, placebo-controlled study of vismodegib as maintenance therapy in patients with ovarian cancer in second or third complete remission. Clin. Cancer Res.18, 6509–6518 (2012). CASPubMed Google Scholar
Catenacci, D. et al. A phase IB/randomized phase II study of gemcitabine (G) plus placebo (P) or vismodegib (V), a Hedgehog (Hh) pathway inhibitor, in patients (pts) with metastatic pancreatic cancer: Interim analysis of a University of Chicago phase II consortium study. J. Clin. Oncol.30, (suppl.), abstr. 4022 (2012).
Olive, K. P. et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science324, 1457–1461 (2009). ADSCASPubMedPubMed Central Google Scholar
Ferrara, N., Hillan, K. J., Gerber, H.-P. & Novotny, W. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nature Rev. Drug Discov.3, 391–400 (2004). CAS Google Scholar
Sandler, A. et al. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N. Engl. J. Med.355, 2542–2550 (2006). ADSCASPubMed Google Scholar
Hurwitz, H. I. et al. Bevacizumab in combination with fluorouracil and leucovorin: an active regimen for first-line metastatic colorectal cancer. J. Clin. Oncol.23, 3502–3508 (2005). CASPubMed Google Scholar
Yang, J. C. et al. A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. N. Engl. J. Med.349, 427–434 (2003). CASPubMedPubMed Central Google Scholar
Friedman, H. S. et al. Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J. Clin. Oncol.27, 4733–4740 (2009). CASPubMed Google Scholar
Vredenburgh, J. J. et al. Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J. Clin. Oncol.25, 4722–4729 (2007). CASPubMed Google Scholar
Perren, T. J. et al. A phase 3 trial of bevacizumab in ovarian cancer. N. Engl. J. Med.365, 2484–2496 (2011). CASPubMed Google Scholar
Tewari, K. S. et al. Incorporation of bevacizumab in the treatment of recurrent and metastatic cervical cancer: A phase III randomized trial of the Gynecologic Oncology Group. J. Clin. Oncol.31 (suppl.), abstr. 3 (2013) Google Scholar
Kindler, H. L. et al. Phase II trial of bevacizumab plus gemcitabine in patients with advanced pancreatic cancer. J. Clin. Oncol.23, 8033–8040 (2005). CASPubMed Google Scholar
Ebos, J. M. et al. Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell15, 232–239 (2009). CASPubMedPubMed Central Google Scholar
Pàez-Ribes, M. et al. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell15, 220–231 (2009). PubMedPubMed Central Google Scholar
Singh, M. et al. Anti-VEGF antibody therapy does not promote metastasis in genetically engineered mouse tumour models. J. Pathol.227, 417–430 (2012). CASPubMed Google Scholar
Miles, D. et al. Disease course patterns after discontinuation of bevacizumab: pooled analysis of randomized phase III trials. J. Clin. Oncol.29, 83–88 (2011). CASPubMed Google Scholar
Blagoev, K. B. et al. Sunitinib does not accelerate tumor growth in patients with metastatic renal cell carcinoma. Cell Rep.3, 277–281 (2013). CASPubMedPubMed Central Google Scholar
Chung, A. S. et al. Differential drug class-specific metastatic effects following treatment with a panel of angiogenesis inhibitors. J. Pathol.227, 404–416 (2012). CASPubMed Google Scholar
de Groot, J. F. et al. Tumor invasion after treatment of glioblastoma with bevacizumab: radiographic and pathologic correlation in humans and mice. Neuro Oncol.12, 233–242 (2010). CASPubMedPubMed Central Google Scholar
Lu, K. V. et al. VEGF inhibits tumor cell invasion and mesenchymal transition through a MET/VEGFR2 complex. Cancer Cell22, 21–35 (2012). CASPubMedPubMed Central Google Scholar
Kantoff, P. W. et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med.363, 411–422 (2010). CASPubMed Google Scholar
Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med.363, 711–723 (2010). CASPubMedPubMed Central Google Scholar
Robert, C. et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N. Engl. J. Med.364, 2517–2526 (2011). CASPubMed Google Scholar
Bargou, R. et al. Tumor regression in cancer patients by very low doses of a T-cell-engaging antibody. Science321, 974–977 (2008). ADSCASPubMed Google Scholar
Brischwein, K. et al. Strictly target cell-dependent activation of T cells by bispecific single-chain antibody constructs of the BiTE class. J. Immunother.30, 798–807 (2007). CASPubMed Google Scholar
Beatty, G. L. et al. CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science331, 1612–1616 (2011). ADSCASPubMedPubMed Central Google Scholar
Lake, R. A. & Robinson, B. W. S. Immunotherapy and chemotherapy — a practical partnership. Nature Rev. Cancer5, 397–405 (2005). CAS Google Scholar
Zitvogel, L., Apetoh, L., Ghiringhelli, F. & Kroemer, G. Immunological aspects of cancer chemotherapy. Nature Rev. Immunol.8, 59–73 (2008). CAS Google Scholar
Ciampricotti, M., Hau, C.-S., Doornebal, C. W., Jonkers, J. & de Visser, K. E. Chemotherapy response of spontaneous mammary tumors is independent of the adaptive immune system. Nature Med.18, 344–346 (2012). CASPubMed Google Scholar
Zitvogel, L. & Kroemer, G. Reply to: Chemotherapy response of spontaneous mammary tumors is independent of the adaptive immune system. Nature Med.18, 346 (2012). References 104 and 105 describe contradictory requirements for adaptive immunity in mediating chemotherapeutic responses in preclinical models of cancer. CAS Google Scholar
Arlen, P. M. et al. A randomized phase II study of concurrent docetaxel plus vaccine versus vaccine alone in metastatic androgen-independent prostate cancer. Clin. Cancer Res.12, 1260–1269 (2006). CASPubMedPubMed Central Google Scholar
Hamzah, J. et al. Vascular normalization in _Rgs5_-deficient tumours promotes immune destruction. Nature453, 410–414 (2008). ADSCASPubMed Google Scholar
Johansson, A., Hamzah, J. J., Payne, C. J. C. & Ganss, R. R. Tumor-targeted TNFα stabilizes tumor vessels and enhances active immunotherapy. Proc. Natl Acad. Sci. USA109, 7841–7846 (2012). ADSCASPubMedPubMed Central Google Scholar
Shrimali, R. K. et al. Antiangiogenic agents can increase lymphocyte infiltration into tumor and enhance the effectiveness of adoptive immunotherapy of cancer. Cancer Res.70, 6171–6180 (2010). CASPubMedPubMed Central Google Scholar
Gabrilovich, D. I., Ishida, T., Nadaf, S., Ohm, J. E. & Carbone, D. P. Antibodies to vascular endothelial growth factor enhance the efficacy of cancer immunotherapy by improving endogenous dendritic cell function. Clin. Cancer Res.5, 2963–2970 (1999). CASPubMed Google Scholar
DeSilva, D. R. et al. Inhibition of mitogen-activated protein kinase kinase blocks T cell proliferation but does not induce or prevent anergy. J. Immunol.160, 4175–4181 (1998). CASPubMed Google Scholar
Boni, A. et al. Selective BRAFV600E inhibition enhances T-cell recognition of melanoma without affecting lymphocyte function. Cancer Res.70, 5213–5219 (2010). CASPubMed Google Scholar
Singh, M. & Ferrara, N. Modeling and predicting clinical efficacy for drugs targeting the tumor milieu. Nature Biotechnol.30, 648–657 (2012). CAS Google Scholar
Yang, S. X. et al. Gene expression profile and angiogenic marker correlates with response to neoadjuvant bevacizumab followed by bevacizumab plus chemotherapy in breast cancer. Clin. Cancer Res.14, 5893–5899 (2008). CASPubMedPubMed Central Google Scholar
Lambrechts, D., Lenz, H.-J., de Haas, S., Carmeliet, P. & Scherer, S. J. Markers of response for the antiangiogenic agent bevacizumab. J. Clin. Oncol.31, 1219–1230 (2013). CASPubMed Google Scholar
Jubb, A. M. et al. Vascular phenotypes in primary non-small cell lung carcinomas and matched brain metastases. Br. J. Cancer104, 1877–1881 (2011). CASPubMedPubMed Central Google Scholar
Sequist, L. V. et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci. Transl. Med.3, 75ra26 (2011). PubMedPubMed Central Google Scholar
Bennouna, J. et al. Continuation of bevacizumab after first progression in metastatic colorectal cancer (ML18147): a randomised phase 3 trial. Lancet Oncol.14, 29–37 (2013). CASPubMed Google Scholar
Cheever, M. A. et al. Translational Research Working Group developmental pathway for immune response modifiers. Clin. Cancer Res.14, 5692–5699 (2008). CASPubMedPubMed Central Google Scholar
Deng, G., Lu, Y., Zlotnikov, G., Thor, A. D. & Smith, H. S. Loss of heterozygosity in normal tissue adjacent to breast carcinomas. Science274, 2057–2059 (1996). ADSCASPubMed Google Scholar
Patocs, A. et al. Breast-cancer stromal cells with TP53 mutations and nodal metastases. N. Engl. J. Med.357, 2543–2551 (2007). CASPubMed Google Scholar
Qiu, W. et al. No evidence of clonal somatic genetic alterations in cancer-associated fibroblasts from human breast and ovarian carcinomas. Nature Genet.40, 650–655 (2008). CASPubMed Google Scholar
Giantonio, B. J. et al. Bevacizumab in combination with oxaliplatin, fluorouracil, and leucovorin (FOLFOX4) for previously treated metastatic colorectal cancer: results from the Eastern Cooperative Oncology Group Study E3200. J. Clin. Oncol.25, 1539–1544 (2007). CASPubMed Google Scholar
Fiegl, H. et al. Breast cancer DNA methylation profiles in cancer cells and tumor stroma: association with HER-2/neu status in primary breast cancer. Cancer Res.66, 29–33 (2006). CASPubMed Google Scholar
Hu, M. et al. Distinct epigenetic changes in the stromal cells of breast cancers. Nature Genet.37, 899–905 (2005). CASPubMed Google Scholar