From circuits to behaviour in the amygdala (original) (raw)
McDonald, A. J. Cortical pathways to the mammalian amygdala. Prog. Neurobiol.55, 257–332 (1998). ArticleCASPubMed Google Scholar
Jarvis, E. D. et al. Avian brains and a new understanding of vertebrate brain evolution. Nature Rev. Neurosci.6, 151–159 (2005). ArticleCAS Google Scholar
Johnston, J. B. Further contributions to the study of the evolution of the forebrain. J. Comp. Neurol.35, 337–481 (1923). Article Google Scholar
Kappers, C. U. A., Huber, G. C. & Crosby, E. C. The Comparative Anatomy of the Nervous System of Vertebrates, Including Man (Macmillan, 1936). Book Google Scholar
Lanuza, E., Belekhova, M., Martínez-Marcos, A., Font, C. & Martínez-García, F. Identification of the reptilian basolateral amygdala: an anatomical investigation of the afferents to the posterior dorsal ventricular ridge of the lizard Podarcis hispanica. Eur. J. Neurosci.10, 3517–3534 (1998). ArticleCASPubMed Google Scholar
Murray, E. A. The amygdala, reward and emotion. Trends Cogn. Sci.11, 489–497 (2007). ArticlePubMed Google Scholar
Stamatakis, A. M. et al. Amygdala and bed nucleus of the stria terminalis circuitry: implications for addiction-related behaviors. Neuropharmacology76, 320–328 (2014). ArticleCASPubMed Google Scholar
Johansen, J. P., Cain, C. K., Ostroff, L. E. & LeDoux, J. E. Molecular mechanisms of fear learning and memory. Cell147, 509–524 (2011). ArticleCASPubMedPubMed Central Google Scholar
Pape, H.-C. & Pare, D. Plastic synaptic networks of the amygdala for the acquisition, expression, and extinction of conditioned fear. Physiol. Rev.90, 419–463 (2010). ArticleCASPubMed Google Scholar
Ehrlich, I. et al. Amygdala inhibitory circuits and the control of fear memory. Neuron62, 757–771 (2009). ArticleCASPubMed Google Scholar
Brown, S. & Schäfer, E. An investigation into the functions of the occipital and temporal lobes of the monkey's brain. Phil. Trans. R. Soc. B179, 303–327 (1888). ADS Google Scholar
Klüver, H. & Bucy, P. 'Psychic blindness' and other symptoms following bilateral temporal lobectomy in Rhesus monkeys. Am. J. Physiol.119, 352–353 (1937). Google Scholar
Weiskrantz, L. Behavioral changes associated with ablation of the amygdaloid complex in monkeys. J. Comp. Physiol. Psychol.49, 381–391 (1956). ArticleCASPubMed Google Scholar
LeDoux, J. E., Cicchetti, P., Xagoraris, A. & Romanski, L. M. The lateral amygdaloid nucleus: sensory interface of the amygdala in fear conditioning. J. Neurosci.10, 1062–1069 (1990). ArticleCASPubMedPubMed Central Google Scholar
Blanchard, D. C. & Blanchard, R. J. Innate and conditioned reactions to threat in rats with amygdaloid lesions. J. Comp. Physiol. Psychol.81, 281–290 (1972). ArticleCASPubMed Google Scholar
Adolphs, R., Tranel, D., Damasio, H. & Damasio, A. Impaired recognition of emotion in facial expressions following bilateral damage to the human amygdala. Nature372, 669–672 (1994). ArticleADSCASPubMed Google Scholar
Anderson, A. K. & Phelps, E. A. Lesions of the human amygdala impair enhanced perception of emotionally salient events. Nature411, 305–309 (2001). ArticleADSCASPubMed Google Scholar
Marowsky, A., Yanagawa, Y., Obata, K. & Vogt, K. E. A specialized subclass of interneurons mediates dopaminergic facilitation of amygdala function. Neuron48, 1025–1037 (2005). ArticleCASPubMed Google Scholar
Freese, J. L. & Amaral, D. G. The organization of projections from the amygdala to visual cortical areas TE and V1 in the macaque monkey. J. Comp. Neurol.486, 295–317 (2005). ArticlePubMed Google Scholar
Chareyron, L. J., Banta Lavenex, P., Amaral, D. G. & Lavenex, P. Stereological analysis of the rat and monkey amygdala. J. Comp. Neurol.519, 3218–3239 (2011). ArticlePubMedPubMed Central Google Scholar
Corbit, L. H. & Balleine, B. W. Double dissociation of basolateral and central amygdala lesions on the general and outcome-specific forms of pavlovian-instrumental transfer. J. Neurosci.25, 962–970 (2005). ArticleCASPubMedPubMed Central Google Scholar
Holland, P. C. & Gallagher, M. Double dissociation of the effects of lesions of basolateral and central amygdala on conditioned stimulus-potentiated feeding and Pavlovian-instrumental transfer. Eur. J. Neurosci.17, 1680–1694 (2003). ArticlePubMed Google Scholar
Quirk, G. J., Armony, J. L. & LeDoux, J. E. Fear conditioning enhances different temporal components of tone-evoked spike trains in auditory cortex and lateral amygdala. Neuron19, 613–624 (1997). ArticleCASPubMed Google Scholar
Quirk, G. J., Repa, C. & LeDoux, J. E. Fear conditioning enhances short-latency auditory responses of lateral amygdala neurons: parallel recordings in the freely behaving rat. Neuron15, 1029–1039 (1995). This is a seminal study showing the increased responding of LA neurons to a CS after fear conditioning. ArticleCASPubMed Google Scholar
LaBar, K. S., Gatenby, J. C., Gore, J. C., LeDoux, J. E. & Phelps, E. A. Human amygdala activation during conditioned fear acquisition and extinction: a mixed-trial fMRI study. Neuron20, 937–945 (1998). ArticleCASPubMed Google Scholar
Morris, J. S., Ohman, A. & Dolan, R. J. Conscious and unconscious emotional learning in the human amygdala. Nature393, 467–470 (1998). ArticleADSCASPubMed Google Scholar
Amano, T., Unal, C. T. & Paré, D. Synaptic correlates of fear extinction in the amygdala. Nature Neurosci.13, 489–494 (2010). ArticleCASPubMed Google Scholar
Milad, M. R. & Quirk, G. J. Neurons in medial prefrontal cortex signal memory for fear extinction. Nature420, 70–74 (2002). ArticleADSCASPubMed Google Scholar
Phelps, E. A., Delgado, M. R., Nearing, K. I. & LeDoux, J. E. Extinction learning in humans: role of the amygdala and vmPFC. Neuron43, 897–905 (2004). ArticleCASPubMed Google Scholar
Nader, K., Schafe, G. E. & Le Doux, J. E. Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature406, 722–726 (2000). ArticleADSCASPubMed Google Scholar
Monfils, M.-H., Cowansage, K. K., Klann, E. & LeDoux, J. E. Extinction-reconsolidation boundaries: key to persistent attenuation of fear memories. Science324, 951–955 (2009). ArticleADSCASPubMedPubMed Central Google Scholar
Schiller, D. et al. Preventing the return of fear in humans using reconsolidation update mechanisms. Nature463, 49–53 (2010). ArticleADSCASPubMed Google Scholar
Etkin, A., Prater, K. E., Schatzberg, A. F., Menon, V. & Greicius, M. D. Disrupted amygdalar subregion functional connectivity and evidence of a compensatory network in generalized anxiety disorder. Arch. Gen. Psychiatry66, 1361–1372 (2009). ArticlePubMed Google Scholar
Tye, K. M. et al. Amygdala circuitry mediating reversible and bidirectional control of anxiety. Nature471, 358–362 (2011). This was the first study to use optogenetic projection-specific manipulations; it showed that activation or inhibition of BLA projections to the CeL nucleus could cause anxiolytic or anxiogenic effects on behaviour, respectively. ArticleADSCASPubMedPubMed Central Google Scholar
Davis, M. The role of the amygdala in fear and anxiety. Annu. Rev. Neurosci.15, 353–375 (1992). ArticleCASPubMed Google Scholar
Nader, K., Majidishad, P., Amorapanth, P. & LeDoux, J. E. Damage to the lateral and central, but not other, amygdaloid nuclei prevents the acquisition of auditory fear conditioning. Learn. Mem.8, 156–163 (2001). ArticleCASPubMedPubMed Central Google Scholar
Collins, D. R. & Paré, D. Differential fear conditioning induces reciprocal changes in the sensory responses of lateral amygdala neurons to the CS+ and CS. Learn. Mem.7, 97–103 (2000). ArticleCASPubMedPubMed Central Google Scholar
Maren, S. Auditory fear conditioning increases CS-elicited spike firing in lateral amygdala neurons even after extensive overtraining. Eur. J. Neurosci.12, 4047–4054 (2000). ArticleCASPubMed Google Scholar
Rogan, M. T., Stäubli, U. V. & LeDoux, J. E. Fear conditioning induces associative long-term potentiation in the amygdala. Nature390, 604–607 (1997). ArticleADSCASPubMed Google Scholar
McKernan, M. G. & Shinnick-Gallagher, P. Fear conditioning induces a lasting potentiation of synaptic currents in vitro. Nature390, 607–611 (1997). Along with ref. 42, this was the first evidence to show synaptic enhancement onto LA neurons after fear conditioning. ArticleADSCASPubMed Google Scholar
Rumpel, S., LeDoux, J., Zador, A. & Malinow, R. Postsynaptic receptor trafficking underlying a form of associative learning. Science308, 83–88 (2005). ArticleADSCASPubMed Google Scholar
Johansen, J. P. et al. Optical activation of lateral amygdala pyramidal cells instructs associative fear learning. Proc. Natl Acad. Sci. USA107, 12692–12697 (2010). ArticleADSCASPubMedPubMed Central Google Scholar
Kapp, B. S., Frysinger, R. C., Gallagher, M. & Haselton, J. R. Amygdala central nucleus lesions: effect on heart rate conditioning in the rabbit. Physiol. Behav.23, 1109–1117 (1979). ArticleCASPubMed Google Scholar
Hitchcock, J. & Davis, M. Lesions of the amygdala, but not of the cerebellum or red nucleus, block conditioned fear as measured with the potentiated startle paradigm. Behav. Neurosci.100, 11–22 (1986). ArticleCASPubMed Google Scholar
LeDoux, J. E., Iwata, J., Cicchetti, P. & Reis, D. J. Different projections of the central amygdaloid nucleus mediate autonomic and behavioral correlates of conditioned fear. J. Neurosci.8, 2517–2529 (1988). ArticleCASPubMedPubMed Central Google Scholar
Viviani, D. et al. Oxytocin selectively gates fear responses through distinct outputs from the central amygdala. Science333, 104–107 (2011). ArticleADSCASPubMed Google Scholar
Ciocchi, S. et al. Encoding of conditioned fear in central amygdala inhibitory circuits. Nature468, 277–282 (2010). ArticleADSCASPubMed Google Scholar
Haubensak, W. et al. Genetic dissection of an amygdala microcircuit that gates conditioned fear. Nature468, 270–276 (2010). Together with ref. 52 this study identified functionally and genetically distinct populations of neurons in the CeL in the expression of conditioned fear. ArticleADSCASPubMedPubMed Central Google Scholar
Li, H. et al. Experience-dependent modification of a central amygdala fear circuit. Nature Neurosci.16, 332–339 (2013). This article reports that experience-dependent plasticity occurs at LA–CeL:SOM+ synapses, demonstrating that amygdala plasticity occurs in more than just the LA. ArticleCASPubMed Google Scholar
Penzo, M. A., Robert, V. & Li, B. Fear conditioning potentiates synaptic transmission onto long-range projection neurons in the lateral subdivision of central amygdala. J. Neurosci.34, 2432–2437 (2014). ArticleCASPubMedPubMed Central Google Scholar
Sparta, D. R. et al. Inhibition of projections from the basolateral amygdala to the entorhinal cortex disrupts the acquisition of contextual fear. Front. Behav. Neurosci.8, 129 (2014). ArticlePubMedPubMed Central Google Scholar
Knobloch, H. S. et al. Evoked axonal oxytocin release in the central amygdala attenuates fear response. Neuron73, 553–566 (2012). ArticleCASPubMed Google Scholar
Cai, H., Haubensak, W., Anthony, T. E. & Anderson, D. J. Central amygdala PKC-δ+ neurons mediate the influence of multiple anorexigenic signals. Nature Neurosci.17, 1240–1248 (2014). This study showed that PKCδ+ neurons suppress feeding and are anxiolytic, and using a 'cre-out' strategy demonstrated opposing functions for PKCδ+ and PKCδ−neurons. ArticleCASPubMed Google Scholar
Felix-Ortiz, A. C. & Tye, K. M. Amygdala inputs to the ventral hippocampus bidirectionally modulate social behavior. J. Neurosci.34, 586–595 (2014). ArticleCASPubMedPubMed Central Google Scholar
Allsop, S. A., Vander Weele, C. M., Wichmann, R. & Tye, K. M. Optogenetic insights on the relationship between anxiety-related behaviors and social deficits. Front. Behav. Neurosci.8, 241 (2014). ArticlePubMedPubMed Central Google Scholar
Wall, N. R., Wickersham, I. R., Cetin, A., De La Parra, M. & Callaway, E. M. Monosynaptic circuit tracing in vivo through Cre-dependent targeting and complementation of modified rabies virus. Proc. Natl Acad. Sci. USA107, 21848–21853 (2010). ArticleADSCASPubMedPubMed Central Google Scholar
Cador, M., Robbins, T. W. & Everitt, B. J. Involvement of the amygdala in stimulus-reward associations: interaction with the ventral striatum. Neuroscience30, 77–86 (1989). ArticleCASPubMed Google Scholar
Everitt, B. J., Cador, M. & Robbins, T. W. Interactions between the amygdala and ventral striatum in stimulus-reward associations: studies using a second-order schedule of sexual reinforcement. Neuroscience30, 63–75 (1989). This study, along with ref. 66, provided early evidence that amygdala projections to the NAc mediate the effects of Pavlovian stimuli predictive of reward on behaviour. ArticleCASPubMed Google Scholar
Gallagher, M., Graham, P. W. & Holland, P. C. The amygdala central nucleus and appetitive Pavlovian conditioning: lesions impair one class of conditioned behavior. J. Neurosci.10, 1906–1911 (1990). ArticleCASPubMedPubMed Central Google Scholar
Hatfield, T., Han, J. S., Conley, M., Gallagher, M. & Holland, P. Neurotoxic lesions of basolateral, but not central, amygdala interfere with Pavlovian second-order conditioning and reinforcer devaluation effects. J. Neurosci.16, 5256–5265 (1996). ArticleCASPubMedPubMed Central Google Scholar
Hiroi, N. & White, N. M. The lateral nucleus of the amygdala mediates expression of the amphetamine-produced conditioned place preference. J. Neurosci.11, 2107–2116 (1991). ArticleCASPubMedPubMed Central Google Scholar
McDonald, R. J. & White, N. M. A triple dissociation of memory systems: hippocampus, amygdala, and dorsal striatum. Behav. Neurosci.107, 3–22 (1993). ArticleCASPubMed Google Scholar
Málková, L., Gaffan, D. & Murray, E. A. Excitotoxic lesions of the amygdala fail to produce impairment in visual learning for auditory secondary reinforcement but interfere with reinforcer devaluation effects in rhesus monkeys. J. Neurosci.17, 6011–6020 (1997). ArticlePubMedPubMed Central Google Scholar
Balleine, B. W. & Killcross, S. Parallel incentive processing: an integrated view of amygdala function. Trends Neurosci.29, 272–279 (2006). ArticleCASPubMed Google Scholar
Baxter, M. G. & Murray, E. A. The amygdala and reward. Nature Rev. Neurosci.3, 563–573 (2002). ArticleCAS Google Scholar
Sanghera, M. K., Rolls, E. T. & Roper-Hall, A. Visual responses of neurons in the dorsolateral amygdala of the alert monkey. Exp. Neurol.63, 610–626 (1979). ArticleCASPubMed Google Scholar
Schoenbaum, G., Chiba, A. A. & Gallagher, M. Orbitofrontal cortex and basolateral amygdala encode expected outcomes during learning. Nature Neurosci.1, 155–159 (1998). ArticleCASPubMed Google Scholar
Tye, K. M., Stuber, G. D., de Ridder, B., Bonci, A. & Janak, P. H. Rapid strengthening of thalamo-amygdala synapses mediates cue-reward learning. Nature453, 1253–1257 (2008). This study demonstrated a causal relationship between synaptic potentiation in the amygdala and cue–reward learning, and showed amygdala neurons increase responsesin vivowith cue–reward learning. ArticleADSCASPubMedPubMed Central Google Scholar
Uwano, T., Nishijo, H., Ono, T. & Tamura, R. Neuronal responsiveness to various sensory stimuli, and associative learning in the rat amygdala. Neuroscience68, 339–361 (1995). ArticleCASPubMed Google Scholar
Belova, M. A., Paton, J. J., Morrison, S. E. & Salzman, C. D. Expectation modulates neural responses to pleasant and aversive stimuli in primate amygdala. Neuron55, 970–984 (2007). ArticleCASPubMedPubMed Central Google Scholar
Paton, J. J., Belova, M. A., Morrison, S. E. & Salzman, C. D. The primate amygdala represents the positive and negative value of visual stimuli during learning. Nature439, 865–870 (2006). In this study, electrophysiological recordings showed that different populations of primate amygdala neurons encoded visual stimuli that predicted positive or negative outcomes. ArticleADSCASPubMedPubMed Central Google Scholar
Schoenbaum, G., Chiba, A. A. & Gallagher, M. Neural encoding in orbitofrontal cortex and basolateral amygdala during olfactory discrimination learning. J. Neurosci.19, 1876–1884 (1999). This was the first electrophysiological recording study demonstrating the ability of amygdala neurons to track changing outcomes across a reversal task. ArticleCASPubMedPubMed Central Google Scholar
Shabel, S. J. & Janak, P. H. Substantial similarity in amygdala neuronal activity during conditioned appetitive and aversive emotional arousal. Proc. Natl Acad. Sci. USA106, 15031–15036 (2009). This study suggested that populations of amygdala neurons that encoded positive and negative outcomes were only partially non-overlapping; the overlapping population may encode salience. ArticleADSCASPubMedPubMed Central Google Scholar
Shabel, S. J., Schairer, W., Donahue, R. J., Powell, V. & Janak, P. H. Similar neural activity during fear and disgust in the rat basolateral amygdala. PLoS ONE6, e27797 (2011). ArticleADSCASPubMedPubMed Central Google Scholar
Russell, J. A. A circumplex model of affect. J. Personal. Soc. Psychol.39, 1161–1178 (1980). Article Google Scholar
Holland, P.C. & Gallagher, M. Amygdala circuitry in attentional and representational processes. Trends Cogn. Sci.3, 65–73 (1999). ArticleCASPubMed Google Scholar
Roesch, M. R., Esber, G. R., Li, J., Daw, N. D. & Schoenbaum, G. Surprise! Neural correlates of Pearce-Hall and Rescorla-Wagner coexist within the brain. Eur. J. Neurosci.35, 1190–1200 (2012). ArticlePubMedPubMed Central Google Scholar
McGaugh, J. L. The amygdala modulates the consolidation of memories of emotionally arousing experiences. Annu. Rev. Neurosci.27, 1–28 (2004). ArticleCASPubMed Google Scholar
Huff, M. L., Miller, R. L., Deisseroth, K., Moorman, D. E. & LaLumiere, R. T. Posttraining optogenetic manipulations of basolateral amygdala activity modulate consolidation of inhibitory avoidance memory in rats. Proc. Natl Acad. Sci. USA110, 3597–3602 (2013). ArticleADSCASPubMedPubMed Central Google Scholar
Popescu, A. T., Saghyan, A. A. & Paré, D. NMDA-dependent facilitation of corticostriatal plasticity by the amygdala. Proc. Natl Acad. Sci. USA104, 341–346 (2007). ArticleADSCASPubMed Google Scholar
Han, J. S., McMahan, R. W., Holland, P. & Gallagher, M. The role of an amygdalo-nigrostriatal pathway in associative learning. J. Neurosci.17, 3913–3919 (1997). ArticleCASPubMedPubMed Central Google Scholar
Vuilleumier, P., Richardson, M. P., Armony, J. L., Driver, J. & Dolan, R. J. Distant influences of amygdala lesion on visual cortical activation during emotional face processing. Nature Neurosci.7, 1271–1278 (2004). ArticleCASPubMed Google Scholar
Peck, C. J. & Salzman, C. D. Amygdala neural activity reflects spatial attention towards stimuli promising reward or threatening punishment. eLife3, e04478 (2014). ArticlePubMed Central Google Scholar
Zhang, W. et al. Functional circuits and anatomical distribution of response properties in the primate amygdala. J. Neurosci.33, 722–733 (2013). ArticleCASPubMedPubMed Central Google Scholar
Han, J.-H. et al. Neuronal competition and selection during memory formation. Science316, 457–460 (2007). ArticleADSCASPubMed Google Scholar
Yiu, A. P. et al. Neurons are recruited to a memory trace based on relative neuronal excitability immediately before training. Neuron83, 722–735 (2014). ArticleCASPubMed Google Scholar
Han, J.-H. et al. Selective erasure of a fear memory. Science323, 1492–1496 (2009). This study provided causal evidence for a stable fear memory engram in the LA by ablating a small proportion of LA neurons overexpressing CREB. ArticleADSCASPubMed Google Scholar
Reijmers, L. G., Perkins, B. L., Matsuo, N. & Mayford, M. Localization of a stable neural correlate of associative memory. Science317, 1230–1233 (2007). ArticleADSCASPubMed Google Scholar
Redondo, R. L. et al. Bidirectional switch of the valence associated with a hippocampal contextual memory engram. Nature513, 426–430 (2014). This study used neuronal tagging to express ChR2 in valence-specific networks, demonstrating that positive and negative valenced networks in the BLA cannot be reversed to the opposite valence by retraining. ArticleADSCASPubMedPubMed Central Google Scholar
Xiu, J. et al. Visualizing an emotional valence map in the limbic forebrain by TAI-FISH. Nature Neurosci.17, 1552–1559 (2014). ArticleCASPubMed Google Scholar
Wolff, S. B. E. et al. Amygdala interneuron subtypes control fear learning through disinhibition. Nature509, 453–458 (2014). Demonstration of unique roles for PV+ and SOM+ interneurons in combination within vivoelectrophysiology in behaving mice to provide new evidence for inhibitory networks contributing to fear conditioning. ArticleADSCASPubMed Google Scholar
Cho, J.-H., Deisseroth, K. & Bolshakov, V. Y. Synaptic encoding of fear extinction in mPFC-amygdala circuits. Neuron80, 1491–1507 (2013). ArticleCASPubMed Google Scholar
Trouche, S., Sasaki, J. M., Tu, T. & Reijmers, L. G. Fear extinction causes target-specific remodeling of perisomatic inhibitory synapses. Neuron80, 1054–1065 (2013). ArticleCASPubMed Google Scholar
Kelley, A. E., Domesick, V. B. & Nauta, W. J. The amygdalostriatal projection in the rat–an anatomical study by anterograde and retrograde tracing methods. Neuroscience7, 615–630 (1982). ArticleCASPubMed Google Scholar
Ambroggi, F., Ishikawa, A., Fields, H. L. & Nicola, S. M. Basolateral amygdala neurons facilitate reward-seeking behavior by exciting nucleus accumbens neurons. Neuron59, 648–661 (2008). ArticleCASPubMedPubMed Central Google Scholar
Britt, J. P. et al. Synaptic and behavioral profile of multiple glutamatergic inputs to the nucleus accumbens. Neuron76, 790–803 (2012). ArticleCASPubMedPubMed Central Google Scholar
Stuber, G. D. et al. Excitatory transmission from the amygdala to nucleus accumbens facilitates reward seeking. Nature475, 377–380 (2011). ArticleCASPubMedPubMed Central Google Scholar
Stefanik, M. T. & Kalivas, P. W. Optogenetic dissection of basolateral amygdala projections during cue-induced reinstatement of cocaine seeking. Front. Behav. Neurosci.7, 213 (2013). ArticlePubMedPubMed Central Google Scholar
Land, B. B. et al. Medial prefrontal D1 dopamine neurons control food intake. Nature Neurosci.17, 248–253 (2014). ArticleCASPubMed Google Scholar
Senn, V. et al. Long-range connectivity defines behavioral specificity of amygdala neurons. Neuron81, 428–437 (2014). ArticleCASPubMed Google Scholar
Roberto, M., Gilpin, N. W. & Siggins, G. R. The central amygdala and alcohol: role of γ-aminobutyric acid, glutamate, and neuropeptides. Cold Spring Harb. Perspect. Med.2, a012195 (2012). ArticlePubMedPubMed CentralCAS Google Scholar
Buffalari, D. M. & See, R. E. Amygdala mechanisms of Pavlovian psychostimulant conditioning and relapse. Curr. Top. Behav. Neurosci.3, 73–99 (2010). ArticlePubMed Google Scholar
Chaudhri, N., Woods, C. A., Sahuque, L. L., Gill, T. M. & Janak, P. H. Unilateral inactivation of the basolateral amygdala attenuates context-induced renewal of Pavlovian-conditioned alcohol-seeking. Eur. J. Neurosci.38, 2751–2761 (2013). ArticleCASPubMedPubMed Central Google Scholar
Barak, S. et al. Disruption of alcohol-related memories by mTORC1 inhibition prevents relapse. Nature Neurosci.16, 1111–1117 (2013). ArticleCASPubMed Google Scholar
Baron-Cohen, S. et al. The amygdala theory of autism. Neurosci. Biobehav. Rev.24, 355–364 (2000). ArticleCASPubMed Google Scholar
Saddoris, M. P., Gallagher, M. & Schoenbaum, G. Rapid associative encoding in basolateral amygdala depends on connections with orbitofrontal cortex. Neuron46, 321–331 (2005). ArticleCASPubMed Google Scholar
Morrison, S. E., Saez, A., Lau, B. & Salzman, C. D. Different time courses for learning-related changes in amygdala and orbitofrontal cortex. Neuron71, 1127–1140 (2011). ArticleCASPubMedPubMed Central Google Scholar
Seymour, B. & Dolan, R. Emotion, decision making, and the amygdala. Neuron58, 662–671 (2008). ArticleCASPubMed Google Scholar
Likhtik, E., Stujenske, J. M., Topiwala, M. A., Harris, A. Z. & Gordon, J. A. Prefrontal entrainment of amygdala activity signals safety in learned fear and innate anxiety. Nature Neurosci.17, 106–113 (2014). ArticleCASPubMed Google Scholar
Seidenbecher, T., Laxmi, T. R., Stork, O. & Pape, H.-C. Amygdalar and hippocampal theta rhythm synchronization during fear memory retrieval. Science301, 846–850 (2003). ArticleADSCASPubMed Google Scholar