Bandell, M. et al. Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron41, 849–857 (2004) CASPubMed Google Scholar
Bautista, D. M. et al. TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell124, 1269–1282 (2006) CASPubMed Google Scholar
Bautista, D. M. et al. Pungent products from garlic activate the sensory ion channel TRPA1. Proc. Natl Acad. Sci. USA102, 12248–12252 (2005) ADSCASPubMedPubMed Central Google Scholar
Jordt, S. E. et al. Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature427, 260–265 (2004) ADSCASPubMed Google Scholar
Taylor-Clark, T. E. et al. Prostaglandin-induced activation of nociceptive neurons via direct interaction with transient receptor potential A1 (TRPA1). Mol. Pharmacol.73, 274–281 (2008) CASPubMed Google Scholar
Trevisani, M. et al. 4-Hydroxynonenal, an endogenous aldehyde, causes pain and neurogenic inflammation through activation of the irritant receptor TRPA1. Proc. Natl Acad. Sci. USA104, 13519–13524 (2007) ADSCASPubMedPubMed Central Google Scholar
Caspani, O. & Heppenstall, P. A. TRPA1 and cold transduction: an unresolved issue? J. Gen. Physiol.133, 245–249 (2009) CASPubMedPubMed Central Google Scholar
Wilson, S. R. et al. TRPA1 is required for histamine-independent, Mas-related G protein-coupled receptor-mediated itch. Nature Neurosci.14, 595–602 (2011) CASPubMed Google Scholar
Andrade, E. L., Meotti, F. C. & Calixto, J. B. TRPA1 antagonists as potential analgesic drugs. Pharmacol. Ther.133, 189–204 (2012) CASPubMed Google Scholar
Kremeyer, B. et al. A gain-of-function mutation in TRPA1 causes familial episodic pain syndrome. Neuron66, 671–680 (2010) CASPubMedPubMed Central Google Scholar
Hinman, A., Chuang, H. H., Bautista, D. M. & Julius, D. TRP channel activation by reversible covalent modification. Proc. Natl Acad. Sci. USA103, 19564–19568 (2006) ADSCASPubMedPubMed Central Google Scholar
Macpherson, L. J. et al. Noxious compounds activate TRPA1 ion channels through covalent modification of cysteines. Nature445, 541–545 (2007) ADSCASPubMed Google Scholar
Kim, D. & Cavanaugh, E. J. Requirement of a soluble intracellular factor for activation of transient receptor potential A1 by pungent chemicals: role of inorganic polyphosphates. J. Neurosci.27, 6500–6509 (2007) CASPubMedPubMed Central Google Scholar
Nilius, B., Prenen, J. & Owsianik, G. Irritating channels: the case of TRPA1. J. Physiol. (Lond.)589, 1543–1549 (2011) CAS Google Scholar
Wang, Y. Y., Chang, R. B., Waters, H. N., McKemy, D. D. & Liman, E. R. The nociceptor ion channel TRPA1 is potentiated and inactivated by permeating calcium ions. J. Biol. Chem.283, 32691–32703 (2008) CASPubMedPubMed Central Google Scholar
Cvetkov, T. L., Huynh, K. W., Cohen, M. R. & Moiseenkova-Bell, V. Y. Molecular architecture and subunit organization of TRPA1 ion channel revealed by electron microscopy. J. Biol. Chem.286, 38168–38176 (2011) CASPubMedPubMed Central Google Scholar
Cao, E., Liao, M., Cheng, Y. & Julius, D. TRPV1 structures in distinct conformations reveal activation mechanisms. Nature504, 113–118 (2013) ADSCASPubMedPubMed Central Google Scholar
Liao, M., Cao, E., Julius, D. & Cheng, Y. Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature504, 107–112 (2013) ADSCASPubMedPubMed Central Google Scholar
Samad, A. et al. The C-terminal basic residues contribute to the chemical- and voltage-dependent activation of TRPA1. Biochem. J.433, 197–204 (2011) CASPubMed Google Scholar
Woolfson, D. N. The design of coiled-coil structures and assemblies. Adv. Protein Chem.70, 79–112 (2005) CASPubMed Google Scholar
Macbeth, M. R. et al. Inositol hexakisphosphate is bound in the ADAR2 core and required for RNA editing. Science309, 1534–1539 (2005) ADSCASPubMedPubMed Central Google Scholar
Paulsen, C. E. & Carroll, K. S. Cysteine-mediated redox signaling: chemistry, biology, and tools for discovery. Chem. Rev.113, 4633–4679 (2013) CASPubMedPubMed Central Google Scholar
Chen, J. et al. Molecular determinants of species-specific activation or blockade of TRPA1 channels. J. Neurosci.28, 5063–5071 (2008) CASPubMedPubMed Central Google Scholar
Moparthi, L. et al. Human TRPA1 is intrinsically cold- and chemosensitive with and without its N-terminal ankyrin repeat domain. Proc. Natl Acad. Sci. USA111, 16901–16906 (2014) ADSCASPubMedPubMed Central Google Scholar
Jaquemar, D., Schenker, T. & Trueb, B. An ankyrin-like protein with transmembrane domains is specifically lost after oncogenic transformation of human fibroblasts. J. Biol. Chem.274, 7325–7333 (1999) CASPubMed Google Scholar
Zayats, V. et al. Regulation of the transient receptor potential channel TRPA1 by its N-terminal ankyrin repeat domain. J. Mol. Model.19, 4689–4700 (2013) CASPubMed Google Scholar
Sokabe, T., Tsujiuchi, S., Kadowaki, T. & Tominaga, M. Drosophila painless is a Ca2+-requiring channel activated by noxious heat. J. Neurosci.28, 9929–9938 (2008) CASPubMedPubMed Central Google Scholar
Viswanath, V. et al. Opposite thermosensor in fruitfly and mouse. Nature423, 822–823 (2003) ADSCASPubMed Google Scholar
Zhong, L. et al. Thermosensory and nonthermosensory isoforms of Drosophila melanogaster TRPA1 reveal heat-sensor domains of a thermoTRP Channel. Cell Rep1, 43–55 (2012) CASPubMedPubMed Central Google Scholar
Cordero-Morales, J. F., Gracheva, E. O. & Julius, D. Cytoplasmic ankyrin repeats of transient receptor potential A1 (TRPA1) dictate sensitivity to thermal and chemical stimuli. Proc. Natl Acad. Sci. USA108, E1184–E1191 (2011) ADSCASPubMedPubMed Central Google Scholar
Jabba, S. et al. Directionality of temperature activation in mouse TRPA1 ion channel can be inverted by single-point mutations in ankyrin repeat six. Neuron82, 1017–1031 (2014) CASPubMedPubMed Central Google Scholar
Payandeh, J., Scheuer, T., Zheng, N. & Catterall, W. A. The crystal structure of a voltage-gated sodium channel. Nature475, 353–358 (2011) CASPubMedPubMed Central Google Scholar
Long, S. B., Campbell, E. B. & Mackinnon, R. Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science309, 897–903 (2005) ADSCASPubMed Google Scholar
Susankova, K., Ettrich, R., Vyklicky, L., Teisinger, J. & Vlachova, V. Contribution of the putative inner-pore region to the gating of the transient receptor potential vanilloid subtype 1 channel (TRPV1). J. Neurosci.27, 7578–7585 (2007) CASPubMedPubMed Central Google Scholar
Voets, T., Janssens, A., Droogmans, G. & Nilius, B. Outer pore architecture of a Ca2+-selective TRP channel. J. Biol. Chem.279, 15223–15230 (2004) CASPubMed Google Scholar
McGaraughty, S. et al. TRPA1 modulation of spontaneous and mechanically evoked firing of spinal neurons in uninjured, osteoarthritic, and inflamed rats. Mol. Pain6, 14 (2010) PubMedPubMed Central Google Scholar
Petrus, M. et al. A role of TRPA1 in mechanical hyperalgesia is revealed by pharmacological inhibition. Mol. Pain3, 40 (2007) PubMedPubMed Central Google Scholar
Banzawa, N. et al. Molecular basis determining inhibition/activation of nociceptive receptor TRPA1: a single amino acid dictates species-specific actions of the most potent mammalian trpa1 antagonists. J. Biol. Chem.289, 31927–31939 (2014) CASPubMedPubMed Central Google Scholar
Klement, G. et al. Characterization of a ligand binding site in the human transient receptor potential ankyrin 1 pore. Biophys. J.104, 798–806 (2013) ADSCASPubMedPubMed Central Google Scholar
Nakatsuka, K. et al. Identification of molecular determinants for a potent mammalian TRPA1 antagonist by utilizing species differences. J. Mol. Neurosci.51, 754–762 (2013) CASPubMed Google Scholar
Xiao, B. et al. Identification of transmembrane domain 5 as a critical molecular determinant of menthol sensitivity in mammalian TRPA1 channels. J. Neurosci.28, 9640–9651 (2008) CASPubMedPubMed Central Google Scholar
Bagnéris, C. et al. Prokaryotic NavMs channel as a structural and functional model for eukaryotic sodium channel antagonism. Proc. Natl Acad. Sci. USA111, 8428–8433 (2014) ADSPubMedPubMed Central Google Scholar
Catterall, W. A. Structure and function of voltage-gated sodium channels at atomic resolution. Exp. Physiol.99, 35–51 (2014) CASPubMed Google Scholar
Kawate, T. & Gouaux, E. Fluorescence-detection size-exclusion chromatography for precrystallization screening of integral membrane proteins. Structure14, 673–681 (2006) CASPubMed Google Scholar
Chae, P. S. et al. Maltose-neopentyl glycol (MNG) amphiphiles for solubilization, stabilization and crystallization of membrane proteins. Nature Methods7, 1003–1008 (2010) CASPubMedPubMed Central Google Scholar
Ohi, M., Li, Y., Cheng, Y. & Walz, T. Negative staining and image classification - powerful tools in modern electron microscopy. Biol. Proced. Online6, 23–34 (2004) CASPubMedPubMed Central Google Scholar
Li, X. et al. Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nature Methods10, 584–590 (2013) CASPubMedPubMed Central Google Scholar
Mindell, J. A. & Grigorieff, N. Accurate determination of local defocus and specimen tilt in electron microscopy. J. Struct. Biol.142, 334–347 (2003) PubMed Google Scholar
Frank, J. et al. SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J. Struct. Biol.116, 190–199 (1996) CASPubMed Google Scholar
Elmlund, H., Elmlund, D. & Bengio, S. PRIME: probabilistic initial 3D model generation for single-particle cryo-electron microscopy. Structure21, 1299–1306 (2013) CASPubMed Google Scholar
Scheres, S. H. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol.180, 519–530 (2012) CASPubMedPubMed Central Google Scholar
Scheres, S. H. Beam-induced motion correction for sub-megadalton cryo-EM particles. Elife3, e03665 (2014) PubMedPubMed Central Google Scholar
Scheres, S. H. & Chen, S. Prevention of overfitting in cryo-EM structure determination. Nature Methods9, 853–854 (2012) CASPubMedPubMed Central Google Scholar
Kucukelbir, A., Sigworth, F. J. & Tagare, H. D. Quantifying the local resolution of cryo-EM density maps. Nature Methods11, 63–65 (2014) CASPubMed Google Scholar
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D66, 486–501 (2010) CASPubMedPubMed Central Google Scholar
Söding, J., Biegert, A. & Lupas, A. N. The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res.33, W244–W248 (2005) PubMedPubMed Central Google Scholar
Jones, D. T. Protein secondary structure prediction based on position-specific scoring matrices. J. Mol. Biol.292, 195–202 (1999) CASPubMed Google Scholar
Gruber, M., Soding, J. & Lupas, A. N. REPPER–repeats and their periodicities in fibrous proteins. Nucleic Acids Res.33, W239–W243 (2005) CASPubMedPubMed Central Google Scholar
Penczek, P., Ban, N., Grassucci, R. A., Agrawal, R. K. & Frank, J. Haloarcula marismortui 50S subunit-complementarity of electron microscopy and X-Ray crystallographic information. J. Struct. Biol.128, 44–50 (1999) CASPubMed Google Scholar
Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D66, 213–221 (2010) CASPubMedPubMed Central Google Scholar
Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D66, 12–21 (2010) CASPubMed Google Scholar
Pettersen, E. F. et al. UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput. Chem.25, 1605–1612 (2004) CASPubMed Google Scholar
Smart, O. S., Neduvelil, J. G., Wang, X., Wallace, B. A. & Sansom, M. S. HOLE: a program for the analysis of the pore dimensions of ion channel structural models. J. Mol. Graph.14, 354–360, 376(1996) CASPubMed Google Scholar