Structure and mechanism of an active lipid-linked oligosaccharide flippase (original) (raw)
Burda, P. & Aebi, M. The dolichol pathway of _N_-linked glycosylation. Biochim. Biophys. Acta1426, 239–257 (1999) ArticleCASPubMed Google Scholar
Helenius, J. et al. Translocation of lipid-linked oligosaccharides across the ER membrane requires Rft1 protein. Nature415, 447–450 (2002) ArticleADSCASPubMed Google Scholar
Sprong, H., van der Sluijs, P. & van Meer, G. How proteins move lipids and lipids move proteins. Nature Rev. Mol. Cell Biol.2, 504–513 (2001) ArticleCAS Google Scholar
Sebastian, T. T., Baldridge, R. D., Xu, P. & Graham, T. R. Phospholipid flippases: building asymmetric membranes and transport vesicles. Biochim. Biophys. Acta1821, 1068–1077 (2012) ArticleCASPubMed Google Scholar
Hankins, H. M., Baldridge, R. D., Xu, P. & Graham, T. R. Role of flippases, scramblases and transfer proteins in phosphatidylserine subcellular distribution. Traffic16, 35–47 (2015) ArticleCASPubMed Google Scholar
Krahling, S., Callahan, M. K., Williamson, P. & Schlegel, R. A. Exposure of phosphatidylserine is a general feature in the phagocytosis of apoptotic lymphocytes by macrophages. Cell Death Differ.6, 183–189 (1999) ArticleCASPubMed Google Scholar
Balasubramanian, K. & Schroit, A. J. Aminophospholipid asymmetry: A matter of life and death. Annu. Rev. Physiol.65, 701–734 (2003) ArticleCASPubMed Google Scholar
Cuthbertson, L., Kos, V. & Whitfield, C. ABC transporters involved in export of cell surface glycoconjugates. Microbiol. Mol. Biol. Rev.74, 341–362 (2010) ArticleCASPubMedPubMed Central Google Scholar
Cuthbertson, L., Kimber, M. S. & Whitfield, C. Substrate binding by a bacterial ABC transporter involved in polysaccharide export. Proc. Natl Acad. Sci. USA104, 19529–19534 (2007) ArticleADSCASPubMedPubMed Central Google Scholar
Clarke, B. R., Cuthbertson, L. & Whitfield, C. Nonreducing terminal modifications determine the chain length of polymannose O antigens of Escherichia coli and couple chain termination to polymer export via an ATP-binding cassette transporter. J. Biol. Chem.279, 35709–35718 (2004) ArticleCASPubMed Google Scholar
Sharom, F. J. Flipping and flopping–lipids on the move. IUBMB Life63, 736–746 (2011) CASPubMed Google Scholar
Kodigepalli, K. M., Bowers, K., Sharp, A. & Nanjundan, M. Roles and regulation of phospholipid scramblases. FEBS Lett.589, 3–14 (2015) ArticleCASPubMed Google Scholar
Brunner, J. D., Lim, N. K., Schenck, S., Duerst, A. & Dutzler, R. X-ray structure of a calcium-activated TMEM16 lipid scramblase. Nature516, 207–212 (2014) ArticleADSCASPubMed Google Scholar
Hvorup, R. N. et al. The multidrug/oligosaccharidyl-lipid/polysaccharide (MOP) exporter superfamily. Eur. J. Biochem.270, 799–813 (2003) ArticleCASPubMed Google Scholar
Lopez-Marques, R. L., Theorin, L., Palmgren, M. G. & Pomorski, T. G. P4-ATPases: lipid flippases in cell membranes. Pflugers Arch.466, 1227–1240 (2014) ArticleCASPubMed Google Scholar
Eckford, P. D. & Sharom, F. J. The reconstituted Escherichia coli MsbA protein displays lipid flippase activity. Biochem. J.429, 195–203 (2010) ArticleCASPubMed Google Scholar
Ward, A., Reyes, C. L., Yu, J., Roth, C. B. & Chang, G. Flexibility in the ABC transporter MsbA: Alternating access with a twist. Proc. Natl Acad. Sci. USA104, 19005–19010 (2007) ArticleADSCASPubMedPubMed Central Google Scholar
Wacker, M. et al. N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli . Science298, 1790–1793 (2002) ArticleADSCASPubMed Google Scholar
Young, N. M. et al. Structure of the _N_-linked glycan present on multiple glycoproteins in the Gram-negative bacterium, Campylobacter jejuni . J. Biol. Chem.277, 42530–42539 (2002) ArticleCASPubMed Google Scholar
Alaimo, C. et al. Two distinct but interchangeable mechanisms for flipping of lipid-linked oligosaccharides. EMBO J.25, 967–976 (2006) ArticleCASPubMedPubMed Central Google Scholar
Lizak, C., Gerber, S., Numao, S., Aebi, M. & Locher, K. P. X-ray structure of a bacterial oligosaccharyltransferase. Nature474, 350–355 (2011) ArticleCASPubMed Google Scholar
Tatar, L. D., Marolda, C. L., Polischuk, A. N., van Leeuwen, D. & Valvano, M. A. An Escherichia coli undecaprenyl-pyrophosphate phosphatase implicated in undecaprenyl phosphate recycling. Microbiology153, 2518–2529 (2007) ArticleCASPubMed Google Scholar
Sanyal, S. & Menon, A. K. Specific transbilayer translocation of dolichol-linked oligosaccharides by an endoplasmic reticulum flippase. Proc. Natl Acad. Sci. USA106, 767–772 (2009) ArticleADSCASPubMedPubMed Central Google Scholar
Sanyal, S. & Menon, A. K. Stereoselective transbilayer translocation of mannosyl phosphoryl dolichol by an endoplasmic reticulum flippase. Proc. Natl Acad. Sci. USA107, 11289–11294 (2010) ArticleADSCASPubMedPubMed Central Google Scholar
Linton, D. et al. Functional analysis of the Campylobacter jejuni N-linked protein glycosylation pathway. Mol. Microbiol.55, 1695–1703 (2005) ArticleCASPubMed Google Scholar
Lizak, C. et al. A catalytically essential motif in external loop 5 of the bacterial oligosaccharyltransferase PglB. J. Biol. Chem.289, 735–746 (2014) ArticleCASPubMed Google Scholar
Troutman, J. M. & Imperiali, B. Campylobacter jejuni PglH is a single active site processive polymerase that utilizes product inhibition to limit sequential glycosyl transfer reactions. Biochemistry48, 2807–2816 (2009) ArticleCASPubMed Google Scholar
Abeijon, C. & Hirschberg, C. B. Topography of initiation of _N_-glycosylation reactions. J. Biol. Chem.265, 14691–14695 (1990) ArticleCASPubMed Google Scholar
Hanover, J. A. & Lennarz, W. J. The topological orientation of _N,N_′-diacetylchitobiosylpyrophosphoryldolichol in artificial and natural membranes. J. Biol. Chem.254, 9237–9246 (1979) ArticleCASPubMed Google Scholar
Gerber, S. et al. Mechanism of bacterial oligosaccharyltransferase: in vitro quantification of sequon binding and catalysis. J. Biol. Chem.288, 8849–8861 (2013) ArticleCASPubMedPubMed Central Google Scholar
Lizak, C. et al. Unexpected reactivity and mechanism of carboxamide activation in bacterial N-linked protein glycosylation. Nature Commun.4, 2627 (2013) ArticleADSCAS Google Scholar
Siarheyeva, A. & Sharom, F. J. The ABC transporter MsbA interacts with lipid A and amphipathic drugs at different sites. Biochem. J.419, 317–328 (2009) ArticleCASPubMed Google Scholar
Jin, M. S., Oldham, M. L., Zhang, Q. & Chen, J. Crystal structure of the multidrug transporter P-glycoprotein from Caenorhabditis elegans . Nature490, 566–569 (2012) ArticleADSCASPubMedPubMed Central Google Scholar
Raetz, C. R., Reynolds, C. M., Trent, M. S. & Bishop, R. E. Lipid A modification systems in gram-negative bacteria. Annu. Rev. Biochem.76, 295–329 (2007) ArticleCASPubMedPubMed Central Google Scholar
Lee, J. Y., Yang, J. G., Zhitnitsky, D., Lewinson, O. & Rees, D. C. Structural basis for heavy metal detoxification by an Atm1-type ABC exporter. Science343, 1133–1136 (2014) ArticleADSCASPubMedPubMed Central Google Scholar
Dawson, R. J. & Locher, K. P. Structure of a bacterial multidrug ABC transporter. Nature443, 180–185 (2006) ArticleADSCASPubMed Google Scholar
Zaitseva, J. et al. A structural analysis of asymmetry required for catalytic activity of an ABC-ATPase domain dimer. EMBO J.25, 3432–3443 (2006) ArticleCASPubMedPubMed Central Google Scholar
Smith, P. C. et al. ATP binding to the motor domain from an ABC transporter drives formation of a nucleotide sandwich dimer. Mol. Cell10, 139–149 (2002) ArticleCASPubMedPubMed Central Google Scholar
Choudhury, H. G. et al. Structure of an antibacterial peptide ATP-binding cassette transporter in a novel outward occluded state. Proc. Natl Acad. Sci. USA111, 9145–9150 (2014) ArticleADSCASPubMedPubMed Central Google Scholar
Shintre, C. A. et al. Structures of ABCB10, a human ATP-binding cassette transporter in apo- and nucleotide-bound states. Proc. Natl Acad. Sci. USA110, 9710–9715 (2013) ArticleADSCASPubMedPubMed Central Google Scholar
Whitfield, C. & Trent, M. S. Biosynthesis and export of bacterial lipopolysaccharides. Annu. Rev. Biochem.83, 99–128 (2014) ArticleCASPubMed Google Scholar
Korkhov, V. M., Mireku, S. A. & Locher, K. P. Structure of AMP-PNP-bound vitamin B12 transporter BtuCD-F. Nature490, 367–372 (2012) ArticleADSCASPubMed Google Scholar
Vestergaard, A. L. et al. Critical roles of isoleucine-364 and adjacent residues in a hydrophobic gate control of phospholipid transport by the mammalian P4-ATPase ATP8A2. Proc. Natl Acad. Sci. USA111, E1334–E1343 (2014) ArticleCASPubMedPubMed Central Google Scholar
Stone, A. & Williamson, P. Outside of the box: recent news about phospholipid translocation by P4 ATPases. J. Chem. Biol.5, 131–136 (2012) ArticlePubMedPubMed Central Google Scholar
Pomorski, T. & Menon, A. K. Lipid flippases and their biological functions. Cell. Mol. Life Sci.63, 2908–2921 (2006) ArticleCASPubMed Google Scholar
Hug, I. & Feldman, M. F. Analogies and homologies in lipopolysaccharide and glycoprotein biosynthesis in bacteria. Glycobiology21, 138–151 (2011) ArticleCASPubMed Google Scholar
Jones, C. Vaccines based on the cell surface carbohydrates of pathogenic bacteria. An. Acad. Bras. Cienc.77, 293–324 (2005) ArticleADSCASPubMed Google Scholar
Strong, M. et al. Toward the structural genomics of complexes: crystal structure of a PE/PPE protein complex from Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA103, 8060–8065 (2006) ArticleADSCASPubMedPubMed Central Google Scholar
Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D66, 213–221 (2010) ArticleCASPubMedPubMed Central Google Scholar
Bricogne, G., Vonrhein, C., Flensburg, C., Schiltz, M. & Paciorek, W. Generation, representation and flow of phase information in structure determination: recent developments in and around SHARP 2.0. Acta Crystallogr. D.59, 2023–2030 (2003) ArticleCASPubMed Google Scholar
Abrahams, J. P. & Leslie, A. G. Methods used in the structure determination of bovine mitochondrial F1 ATPase. Acta Crystallogr. D52, 30–42 (1996) ArticleCASPubMed Google Scholar
Collaborative Computational Project, Number 4. The _CCP_4 suite: programs for protein crystallography. Acta Crystallogr. D50, 760–763 (1994)
Lizak, C., Fan, Y. Y., Weber, T. C. & Aebi, M. N-Linked glycosylation of antibody fragments in Escherichia coli. Bioconjug. Chem.22, 488–496 (2011) ArticleCASPubMed Google Scholar
Lefebre, M. D. & Valvano, M. A. Construction and evaluation of plasmid vectors optimized for constitutive and regulated gene expression in Burkholderia cepacia complex isolates. Appl. Environ. Microbiol.68, 5956–5964 (2002) ArticleCASPubMedPubMed CentralADS Google Scholar
Liu, F. et al. Rationally designed short polyisoprenol-linked PglB substrates for engineered polypeptide and protein N-glycosylation. J. Am. Chem. Soc.136, 566–569 (2014) ArticleCASPubMed Google Scholar