A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing (original) (raw)

References

  1. Jarvis, E. D. et al. Whole-genome analyses resolve early branches in the tree of life of modern birds. Science 346, 1320–1331 (2014)
    ADS CAS PubMed PubMed Central Google Scholar
  2. Gill, F. & Donsker, D. IOC World Bird List (v5.1) http://dx.doi.org/10.14344/IOC.ML.5.1 (2015)
    Google Scholar
  3. Gill, F. B. Ornithology 2nd edn (W. H. Freeman and Co., 1995)
    Google Scholar
  4. Hackett, S. J. et al. A phylogenomic study of birds reveals their evolutionary history. Science 320, 1763–1768 (2008)
    ADS CAS PubMed Google Scholar
  5. Ericson, P. G. P. et al. Diversification of Neoaves: integration of molecular sequence data and fossils. Biol. Lett. 2, 543–547 (2006)
    PubMed PubMed Central Google Scholar
  6. McCormack, J. E. et al. A phylogeny of birds based on over 1,500 loci collected by target enrichment and high-throughput sequencing. PLoS ONE 8, e54848 (2013)
    ADS CAS PubMed PubMed Central Google Scholar
  7. Mayr, G. Paleogene Fossil Birds (Springer, 2009)
    Google Scholar
  8. Mayr, G. Metaves, Mirandornithes, Strisores and other novelties — a critical review of the higher-level phylogeny of neornithine birds. J. Zoological Syst. Evol. Res. 49, 58–76 (2011)
    Google Scholar
  9. Graybeal, A. Is it better to add taxa or characters to a difficult phylogenetic problem? Syst. Biol. 47, 9–17 (1998)
    CAS PubMed Google Scholar
  10. Heath, T. A., Hedtke, S. M. & Hillis, D. M. Taxon sampling and the accuracy of phylogenetic analyses. Journal of Systematics and Evolution 46, 239–257 (2008)
    Google Scholar
  11. Townsend, J. P. & Lopez-Giraldez, F. Optimal selection of gene and ingroup taxon sampling for resolving phylogenetic relationships. Syst. Biol. 59, 446–457 (2010)
    CAS PubMed Google Scholar
  12. Lemmon, A. R., Emme, S. A. & Lemmon, E. M. Anchored hybrid enrichment for massively high-throughput phylogenomics. Syst. Biol. 61, 727–744 (2012)
    CAS PubMed Google Scholar
  13. Lanfear, R., Calcott, B., Ho, S. Y. & Guindon, S. PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol. 29, 1695–1701 (2012)
    CAS PubMed Google Scholar
  14. Berv, J. S. & Prum, R. O. A comprehensive multilocus phylogeny of the neotropical cotingas (Cotingidae, Aves) with a comparative evolutionary analysis of breeding system and plumage dimorphism and a revised phylogenetic classification. Mol. Phylogenet. Evol. 81, 120–136 (2014)
    PubMed Google Scholar
  15. Townsend, J. P. Profiling phylogenetic informativeness. Syst. Biol. 56, 222–231 (2007)
    CAS PubMed Google Scholar
  16. Townsend, J. P., Su, Z. & Tekle, Y. I. Phylogenetic signal and noise: predicting the power of a data set to resolve phylogeny. Syst. Biol. 61, 835–849 (2012)
    CAS PubMed Google Scholar
  17. Aberer, A. J., Kobert, K. & Stamatakis, A. ExaBayes: massively parallel Bayesian tree inference for the whole-genome era. Mol. Biol. Evol. 31, 2553–2556 (2014)
    CAS PubMed PubMed Central Google Scholar
  18. Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014)
    CAS PubMed PubMed Central Google Scholar
  19. Liu, L., Yu, L., Pearl, D. K. & Edwards, S. V. Estimating species phylogenies using coalescence times among sequences. Syst. Biol. 58, 468–477 (2009)
    CAS PubMed Google Scholar
  20. Liu, L. & Yu, L. Estimating species trees from unrooted gene trees. Syst. Biol. 60, 661–667 (2011)
    PubMed Google Scholar
  21. Mirarab, S. et al. ASTRAL: genome-scale coalescent-based species tree estimation. Bioinformatics 30, i541–i548 (2014)
    CAS PubMed PubMed Central Google Scholar
  22. Tonini, J., Moore, A., Stern, D., Shcheglovitova, M. & Ortí, G. Concatenation and species tree methods exhibit statistically indistinguishable accuracy under a range of simulated conditions. PLOS Currents Tree of Life 1 http://dx.doi.org/10.1371/currents.tol.34260cc27551a527b124ec5f6334b6be (2015)
  23. Mirarab, S., Bayzid, M. S. & Warnow, T. Evaluating summary methods for multi-locus species tree estimation in the presence of incomplete lineage sorting. Syst. Biol. http://dx.doi.org/10.1093/sysbio/syu063 (2014)
  24. Barker, F. K., Cibois, A., Schikler, P., Felsenstein, J. & Cracraft, J. Phylogeny and diversification of the largest avian radiation. Proc. Natl Acad. Sci. USA 101, 11040–11045 (2004)
    ADS CAS PubMed PubMed Central Google Scholar
  25. Parham, J. F. et al. Best practices for justifying fossil calibrations. Syst. Biol. 61, 346–359 (2012)
    PubMed Google Scholar
  26. Longrich, N. R., Tokaryk, T. & Field, D. J. Mass extinction of birds at the Cretaceous–Paleogene (K–Pg) boundary. Proc. Natl Acad. Sci. USA 108, 15253–15257 (2011)
    ADS CAS PubMed PubMed Central Google Scholar
  27. Feduccia, A. The Origin and Evolution of Birds 2nd edn (Yale Univ. Press, 1999)
    Google Scholar
  28. Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012)
    ADS CAS PubMed Google Scholar
  29. Goldsmith, T. H. Hummingbirds see near ultraviolet light. Science 207, 786–788 (1980)
    ADS CAS PubMed Google Scholar
  30. del Hoyo, J., Elliott, A., Sargatal, J., Christie, D. A. & de Juana, E. Handbook of the Birds of the World Alive (Lynx Edicions, 2015)
    Google Scholar
  31. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013)
    CAS PubMed PubMed Central Google Scholar
  32. Meyer, M. & Kircher M Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb Protoc. http://dx.doi.org/10.1101/pdb.prot5448 (2010)
  33. Rokyta, D. R., Lemmon, A. R., Margres, M. J. & Arnow, K. The venom-gland transcriptome of the eastern diamondback rattlesnake (Crotalus adamanteus). BMC Genomics 13, 312 (2012)
    CAS PubMed PubMed Central Google Scholar
  34. Misof, B. et al. Phylogenomics resolves the timing and pattern of insect evolution. Science 346, 763–767 (2014)
    ADS CAS PubMed Google Scholar
  35. Dornburg, A., Santini, F. & Alfaro, M. E. The influence of model averaging on clade posteriors: an example using the triggerfishes (Family Balistidae). Syst. Biol. 57, 905–919 (2008)
    CAS PubMed Google Scholar
  36. Tracer. v1.6. http://beast.bio.ed.ac.uk/Tracer (2014)
  37. Robinson, D. F. & Foulds, L. R. in Combinatorial Mathematics VI in Lecture Notes in Mathematics, Vol. 748 (eds Horadam A. F. & Wallis W. D. ) Ch. 12 119–126 (Springer, 1979)
    Google Scholar
  38. Bogdanowicz, D., Giaro, K. & Wróbel, B. TreeCmp: comparison of trees in polynomial time. Evol. Bioinform. 8, 475–487 (2012)
    Google Scholar
  39. Nye, T. M. W. Trees of Trees: an approach to comparing multiple alternative phylogenies. Syst. Biol. 57, 785–794 (2008)
    PubMed Google Scholar
  40. Schliep, K. P. phangorn: phylogenetic analysis in R. Bioinformatics 27, 592–593 (2011)
    CAS PubMed Google Scholar
  41. Weyenberg, G., Huggins, P. M., Schardl, C. L., Howe, D. K. & Yoshida, R. KDETREES: non-parametric estimation of phylogenetic tree distributions. Bioinformatics 30, 2280–2287 (2014)
    CAS PubMed PubMed Central Google Scholar
  42. Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973 (2012)
    Article CAS PubMed PubMed Central Google Scholar
  43. Rannala, B. & Yang, Z. Bayes estimation of species divergence times and ancestral population sizes using DNA sequences from multiple loci. Genetics 164, 1645–1656 (2003)
    CAS PubMed PubMed Central Google Scholar
  44. Shaw, T. I., Ruan, Z., Glenn, T. C. & Liu, L. STRAW: species tree analysis web server. Nucleic Acids Res. 41, W238–W241 (2013)
    PubMed PubMed Central Google Scholar
  45. Liu, L., Yu, L. & Edwards, S. A maximum pseudo-likelihood approach for estimating species trees under the coalescent model. BMC Evol. Biol. 10, 302 (2010)
    PubMed PubMed Central Google Scholar
  46. Saitou, N. & Nei, M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425 (1987)
    CAS PubMed Google Scholar
  47. Mirarab, S., Bayzid, M. S., Boussau, B. & Warnow, T. Statistical binning enables an accurate coalescent-based estimation of the avian tree. Science 346, (2014)
  48. Mirarab, S., Bayzid, M. S. & Warnow, T. Evaluating summary methods for multilocus species tree estimation in the presence of incomplete lineage sorting. Syst. Biol. (2014)
  49. Bayzid, M. S. & Warnow, T. Naive binning improves phylogenomic analyses. Bioinformatics 29, 2277–2284 (2013)
    CAS PubMed Google Scholar
  50. DeGiorgio, M. & Degnan, J. H. Fast and consistent estimation of species trees using supermatrix rooted triples. Mol. Biol. Evol. 27, 552–569 (2010)
    CAS PubMed Google Scholar
  51. Kimball, R. T., Wang, N., Heimer-McGinn, V., Ferguson, C. & Braun, E. L. Identifying localized biases in large datasets: a case study using the avian tree of life. Mol. Phylogenet. Evol. 69, 1021–1032 (2013)
    PubMed Google Scholar
  52. McCormack, J. E. et al. A phylogeny of birds based on over 1,500 loci collected by target enrichment and high-throughput sequencing. PLoS ONE 8, e54848 (2013)
    ADS CAS PubMed PubMed Central Google Scholar
  53. Springer, M. S. & Gatesy, J. Land plant origins and coalescence confusion. Trends Plant Sci. 19, 267–269 (2014)
    CAS PubMed Google Scholar
  54. Tonini J, Moore A, Stearn D, Shcheglovitova M & Ortí, G. Concatenation and species tree methods exhibit statistically indistinguishable accuracy under a range of simulated conditions. PLOS Currents Tree of Life 1, (2015)
  55. Pond, S. L. K. & Muse, S. V. in Statistical Methods in Molecular Evolution (ed. Nielsen, R. ) 125–181 (Springer, 2005)
    Google Scholar
  56. López-Giráldez, F. & Townsend, J. P. PhyDesign: an online application for profiling phylogenetic informativeness. BMC Evol. Biol. 11, 152 (2011)
    PubMed PubMed Central Google Scholar
  57. Sanderson, M. A nonparametric approach to estimating divergence times in the absence of rate constancy. Mol. Biol. Evol. 14, 1218 (1997)
    CAS Google Scholar
  58. Simmons, M. P., Carr, T. G. & O’Neill, K. Relative character-state space, amount of potential phylogenetic information, and heterogeneity of nucleotide and amino acid characters. Mol. Phylogenet. Evol. 32, 913–926 (2004)
    CAS PubMed Google Scholar
  59. Townsend, J. P. & Leuenberger, C. Taxon sampling and the optimal rates of evolution for phylogenetic inference. Syst. Biol. 60, 358–365 (2011)
    PubMed Google Scholar
  60. Klopfstein, S., Kropf, C. & Quicke, D. L. J. An evaluation of phylogenetic informativeness profiles and the molecular phylogeny of Diplazontinae (Hymenoptera, Ichneumonidae). Syst. Biol. 59, 226–241 (2010)
    CAS PubMed Google Scholar
  61. Drummond, A. J. & Bouckaret, R. R. Bayesian Evolutionary Analysis With BEAST (Cambridge Univ. Press, 2015)
    MATH Google Scholar
  62. Hsiang, A. Y. et al. The origin of snakes: revealing the ecology, behavior, and evolutionary history of early snakes using genomics, phenomics, and the fossil record. BMC Evol. Biol. 15, 87 (2015)
    PubMed PubMed Central Google Scholar
  63. Phillips, M. J., Gibb, G. C., Crimp, E. A. & Penny, D. Tinamous and moa flock together: mitochondrial genome sequence analysis reveals independent losses of flight among ratites. Syst. Biol. 59, 90–107 (2010)
    PubMed Google Scholar
  64. Pereira, S. L. & Baker, A. J. A mitogenomic timescale for birds detects variable phylogenetic rates of molecular evolution and refutes the standard molecular clock. Mol. Biol. Evol. 23, 1731–1740 (2006)
    CAS PubMed Google Scholar
  65. Nam, K. et al. Molecular evolution of genes in avian genomes. Genome Biol. 11, R68 (2010)
    PubMed PubMed Central Google Scholar
  66. Drummond, A. J., Ho, S. Y. W., Phillips, M. J. & Rambaut, A. Relaxed phylogenetics and dating with confidence. PLoS Biol. 4, e88 (2006)
    PubMed PubMed Central Google Scholar
  67. Dornburg, A., et al. Relaxed clocks and inferences of heterogeneous patterns of nucleotide substitution and divergence time estimates across whales and dolphins (Mammalia: Cetacea). Mol. Biol. Evol. 29, 721–736 (2012)
    CAS PubMed Google Scholar
  68. Yang, Z. & Rannala, B. Bayesian estimation of species divergence times under a molecular clock using multiple fossil calibrations with soft bounds. Mol. Biol. Evol. 23, 212–226 (2006)
    CAS PubMed Google Scholar
  69. Ho, S. Y. W. Calibrating molecular estimates of substitution rates and divergence times in birds. J. Avian Biol. 38, 409–414 (2007)
    Google Scholar
  70. Heled, J. & Drummond, A. J. Calibrated tree priors for relaxed phylogenetics and divergence time estimation. Syst. Biol. 61, 138–149 (2012)
    PubMed Google Scholar
  71. Benton, M. J. & Donoghue, P. C. J. Paleontological evidence to date the tree of life. Mol. Biol. Evol. 24, 26 (2007)
    CAS PubMed Google Scholar
  72. Clarke, J. A. Morphology, phylogenetic taxonomy, and systematics of Ichthyornis and Apatornis (Avialae: Ornithurae). Bull. Am. Mus. Nat. Hist. 286, 1–179 (2004)
    Google Scholar
  73. Field, D. J., LeBlanc, A., Gau, A. & Behlke, A. D. B. Pelagic neonatal fossils support viviparity and precocial life history of Cretaceous mosasaurs. Palaeontology 58, 401–407 (2015)
    Google Scholar
  74. Mayr, G. The age of the crown group of passerine birds and its evolutionary significance — molecular calibrations versus the fossil record. Syst. Biodivers. 11, 7–13 (2013)
    Google Scholar
  75. Jetz, W. et al. Global distribution and conservation of evolutionary distinctness in birds. Curr. Biol. 24, 919–930 (2014)
    CAS PubMed Google Scholar
  76. Hedges, S. B., Parker, P. H., Sibley, C. G. & Kumar, S. Continental breakup and the ordinal diversification of birds and mammals. Nature 381, 226–229 (1996)
    ADS CAS PubMed Google Scholar
  77. Benton, M. J. Early origins of modern birds and mammals: molecules vs. morphology. Bioessays 21, 1043–1051 (1999)
    CAS PubMed Google Scholar
  78. Hope, S. in Mesozoic Birds: Above the Heads of Dinosaurs (eds Chiappe L. M. & Witmer L. M. ) 339–388 (Univ. of California Press, 2002)
    Google Scholar
  79. Longrich, N. R., Tokaryk, T. & Field, D. J. Mass extinction of birds at the Cretaceous–Paleogene (K–Pg) boundary. Proc. Natl Acad. Sci. USA 108, 15253–15257 (2011)
    ADS CAS PubMed PubMed Central Google Scholar
  80. Baker, A. J., Pereira, S. L. & Paton, T. A. Phylogenetic relationships and divergence times of Charadriiformes genera: multigene evidence for the Cretaceous origin of at least 14 clades of shorebirds. Biol. Lett. 3, 205–209 (2007)
    PubMed PubMed Central Google Scholar
  81. dos Reis, M. et al. Phylogenomic datasets provide both precision and accuracy in estimating the timescale of placental mammal phylogeny. Proc. R. Soc. B 279, 3491–3500 (2012)
    PubMed PubMed Central Google Scholar
  82. Dornburg, A., Townsend, J. P., Friedman, M. & Near, T. J. Phylogenetic informativeness reconciles ray-finned fish molecular divergence times. BMC Evol. Biol. 14, 169 (2014)
    PubMed PubMed Central Google Scholar
  83. Brandley, M. C. et al. Accommodating heterogenous rates of evolution in molecular divergence dating methods: an example using intercontinental dispersal of Plestiodon (Eumeces) lizards. Syst. Biol. 60, 3–15 (2011)
    CAS PubMed Google Scholar
  84. Phillips, M. J. Branch-length estimation bias misleads molecular dating for a vertebrate mitochondrial phylogeny. Gene 441, 132–140 (2009)
    CAS PubMed Google Scholar

Download references