Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6 Å resolution (original) (raw)

References

  1. Sweetser, D., Nonet, M. & Young, R. A. Prokaryotic and eukaryotic RNA polymerase have homologous core subunits. Proc. Natl Acad. Sci. USA 84, 1192–1196 (1987)
    Article ADS CAS Google Scholar
  2. Ebright, R. H. RNA polymerase: structural similarities between bacterial RNA polymerase and eukaryotic RNA polymerase II. J. Mol. Biol. 304, 687–698 (2000)
    Article CAS Google Scholar
  3. Burgess, R. R., Travers, A. A., Dunn, J. J. & Bautz, E. K. F. Factors stimulating transcription by RNA polymerase. Nature 221, 43–44 (1969)
    Article ADS CAS Google Scholar
  4. Gross, C., Lonetto, M. & Losick, R. in Transcriptional Regulation (eds McKnight, S. R. & Yamamoto, K. R.) 129–176 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1992)
    Google Scholar
  5. Record, M. T. J., Reznikoff, W., Craig, M., McQuade, K. & Schlax, P. in Escherichia coli and Salmonella (ed. Neidhart, F. C.) 792–820 (ASM, Washington DC, 1996)
    Google Scholar
  6. von Hippel, P. An integrated model of the transcription complex in elongation, termination, and editing. Science 281, 660–665 (1998)
    Article CAS Google Scholar
  7. Bar-Nahum, G. & Nudler, E. Isolation and characterization of σ70-retaining transcription elongation complexes from Escherichia coli. Cell 106, 443–451 (2001)
    Article CAS Google Scholar
  8. Mukhopadhyay, K. et al. Translocation of σ70 with RNA polymerase during transcription: fluorescence resonance energy transfer assay for movement relative to DNA. Cell 106, 453–463 (2001)
    Article CAS Google Scholar
  9. Craig, M. L. et al. DNA footprints of the two kinetically significant intermediates in formation of an RNA polymerase–promoter open complex: evidence that interactions with start site and downstream DNA induce sequential conformational changes in polymerase and DNA. J. Mol. Biol. 283, 741–756 (1998)
    Article CAS Google Scholar
  10. Gross, C. et al. The functional and regulatory roles of sigma factors in transcription. Cold Spring Harbor Symp. Quant. Biol. 63, 141–155 (1998)
    Article CAS Google Scholar
  11. Ishihama, A. Functional modulation of Escherichia coli RNA polymerase. Annu. Rev. Microbiol. 54, 499–518 (2000)
    Article CAS Google Scholar
  12. Lonetto, M., Gribskov, M. & Gross, C. The σ70 family: sequence conservation and evolutionary relationships. J. Bacteriol. 174, 3843–3849 (1992)
    Article CAS Google Scholar
  13. Dombroski, A. J., Walter, W. A., Record, M. T., Siegele, D. A. & Gross, C. A. Polypeptides containing highly conserved region of transcription initiation factor Σ 70 exhibit specificity of binding to promoter DNA. Cell 70, 501–512 (1992)
    Article CAS Google Scholar
  14. Barne, K. A., Bown, J. A., Busby, S. J. W. & Minchin, S. D. Region 2.5 of the Escherichia coli RNA polymerase σ70 subunit is responsible for the recognition of the ‘extended - 10’ motif at promoters. EMBO J. 16, 4034–4040 (1997)
    Article CAS Google Scholar
  15. Fenton, M. S., Lee, S. J. & Gralla, J. D. Escherichia coli promoter opening and - 10 recognition: mutational analysis of σ70. EMBO J. 19, 1130–1137 (2000)
    Article CAS Google Scholar
  16. Marr, M. T. & Roberts, J. W. Promoter recognition as measured by binding of polymerase to nontemplate strand oligonucleotide. Science 276, 1258–1260 (1997)
    Article CAS Google Scholar
  17. Huang, X., Lopez de Saro, F. J. & Helmann, J. D. Sigma factor mutations affecting the sequence-selective interaction of RNA polymerase with - 10 region single-stranded DNA. Nucleic Acids Res. 25, 2603–2609 (1997)
    Article CAS Google Scholar
  18. Sharp, M. et al. The interface of σ with core RNA polymerase is extensive, conserved, and functionally specialized. Genes Dev. 13, 3015–3026 (1999)
    Article CAS Google Scholar
  19. Lesley, S. A. & Burgess, R. R. Characterization of the Escherichia coli transcription factor sigma 70: localization of a region involved in the interaction with core RNA polymerase. Biochemistry 28, 7728–7734 (1989)
    Article CAS Google Scholar
  20. Owens, J. T. et al. Mapping the σ70 subunit contact sites on Escherichia coli RNA polymerase with a σ70-conjugated chemical protease. Proc. Natl Acad. Sci. USA 95, 6021–6026 (1998)
    Article ADS CAS Google Scholar
  21. Zhang, G. et al. A crystal structure of Thermus aquaticus core RNA polymerase at 3.3 Å resolution. Cell 98, 811–824 (1999)
    Article CAS Google Scholar
  22. Cramer, P., Bushnell, D. A. & Kornberg, R. D. Structural basis of transcription: RNA polymerase II at 2.8 Å resolution. Science 292, 1863–1876 (2001)
    Article ADS CAS Google Scholar
  23. Gnatt, A. L., Cramer, P., Fu, J., Bushnell, D. A. & Kornberg, R. D. Structural basis of transcription: an RNA polymerase II elongation complex at 3.3 Å resolution. Science 292, 1876–1882 (2001)
    Article ADS CAS Google Scholar
  24. Korzheva, N. et al. A structural model of transcription elongation. Science 289, 619–625 (2000)
    Article ADS CAS Google Scholar
  25. Naryshkin, N., Revyakin, A., Kim, Y., Mekler, V. & Ebright, R. H. Structural organization of the RNA polymerase–promoter open complex. Cell 101, 601–611 (2000)
    Article CAS Google Scholar
  26. Coulombe, B. & Burton, Z. F. DNA bending and wrapping around RNA polymerase: a “revolutionary” model describing transcriptional mechanisms. Microbiol. Mol. Biol. Rev. 63, 457–478 (1999)
    CAS PubMed PubMed Central Google Scholar
  27. Dombroski, A. J., Walter, W. A. & Gross, C. A. Amino-terminal amino acids modulate σ-factor DNA-binding activity. Genes Dev. 7, 2446–2455 (1993)
    Article CAS Google Scholar
  28. Siegele, D. A., Hu, J. C., Walter, W. A. & Gross, C. A. Altered promoter recognition by mutant forms of the sigma 70 subunit of Escherichia coli RNA polymerase. J. Mol. Biol. 206, 591–603 (1989)
    Article CAS Google Scholar
  29. Gardella, T., Moyle, H. & Susskind, M. M. A mutant Escherichia coli sigma 70 subunit of RNA polymerase with altered promoter specificity. J. Mol. Biol. 206, 579–590 (1989)
    Article CAS Google Scholar
  30. Malhotra, A., Severinova, E. & Darst, S. A. Crystal structure of a σ70 subunit fragment from E. coli RNA polymerase. Cell 87, 127–136 (1996)
    Article CAS Google Scholar
  31. Holm, L. & Sander, C. Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233, 123–138 (1993)
    Article CAS Google Scholar
  32. Arthur, T. M., Anthony, L. C. & Burgess, R. R. Mutational analysis of β′260–309, a σ70 binding site located on Escherichia coli core RNA polymerase. J. Biol. Chem. 275, 23113–23119 (2000)
    Article CAS Google Scholar
  33. Young, B. A. et al. A coiled-coil from the RNA polymerase β′ subunit allosterically induces selective nontemplate strand binding by σ70. Cell 105, 935–944 (2001)
    Article CAS Google Scholar
  34. Dieci, G. et al. A universally conserved region of the largest subunit participates in the active site of RNA polymerase III. EMBO J. 14, 3766–3776 (1995)
    Article CAS Google Scholar
  35. Brautigam, C. A. & Steitz, T. A. Structural and functional insights provided by crystal structures of DNA polymerases and their substrate complexes. Curr. Opin. Struct. Biol. 1, 54–63 (1998)
    Article Google Scholar
  36. Bown, J. A. et al. Organization of open complexes at Escherichia coli promoters. J. Biol. Chem. 274, 2263–2270 (1999)
    Article CAS Google Scholar
  37. Owens, J. T. et al. Mapping the promoter DNA sites proximal to conserved regions of σ70 in an Escherichia coli RNA polymerase–_lac_UV5 open promoter complex. Biochemistry 37, 7670–7675 (1998)
    Article CAS Google Scholar
  38. Lim, H. M., Lee, H. J., Roy, S. & Adhya, S. A “master” in base unpairing during isomerization of a promoter upon RNA polymerase binding. Proc. Natl Acad. Sci. USA 98, 14849–14852 (2001)
    Article ADS CAS Google Scholar
  39. Daube, S. S. & von Hippel, P. H. Interactions of Escherichia coli σ70 within the transcription elongation complex. Proc. Natl Acad. Sci. USA 96, 8390–8395 (1999)
    Article ADS CAS Google Scholar
  40. Vassylyeva, M. N. et al. Purification, crystallization and initial crystallographic analysis of RNA polymerase holoenzyme from Thermus thermophilus. Acta. Crystallogr. (submitted)
  41. Otwinowski, Z. & Minor, W. Processing X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)
    Article CAS Google Scholar
  42. Yeates, T. D. Detecting and overcoming crystal twinning. Methods Enzymol. 276, 344–358 (1997)
    Article CAS Google Scholar
  43. Brünger, A. T. et al. Crystallography and NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998)
    Article Google Scholar
  44. Abrahams, J. P., Leslie, A. G., Lutter, R. & Walker, J. E. Structure at 2.8 Å resolution of F1-ATPase from bovine heart mitochondria. Nature 370, 621–628 (1994)
    Article ADS CAS Google Scholar
  45. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for binding protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991)
    Article Google Scholar
  46. Kraulis, P. J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991)
    Article Google Scholar
  47. Esnouf, R. M. Further additions to MolScript version 1.4, including reading and contouring of electron-density maps. Acta Crystallogr. D 55, 938–940 (1999)
    Article CAS Google Scholar
  48. Merrit, E. A. & Bacon, D. J. Raster3D: photorealistic molecular graphics. Methods Enzymol. 277, 505–524 (1997)
    Article Google Scholar

Download references