SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells (original) (raw)
Murry, C.E. & Keller, G. Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell132, 661–680 (2008). ArticleCASPubMed Google Scholar
Kattman, S.J. et al. Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell8, 228–240 (2011). ArticleCASPubMed Google Scholar
Yang, L. et al. Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature453, 524–528 (2008). ArticleCASPubMed Google Scholar
Zwi, L. et al. Cardiomyocyte differentiation of human induced pluripotent stem cells. Circulation120, 1513–1523 (2009). ArticleCASPubMed Google Scholar
Braam, S.R., Passier, R. & Mummery, C.L. Cardiomyocytes from human pluripotent stem cells in regenerative medicine and drug discovery. Trends Pharmacol. Sci.30, 536–545 (2009). ArticleCASPubMed Google Scholar
Anderson, D. et al. Transgenic enrichment of cardiomyocytes from human embryonic stem cells. Mol. Ther.15, 2027–2036 (2007). ArticleCASPubMed Google Scholar
Huber, I. et al. Identification and selection of cardiomyocytes during human embryonic stem cell differentiation. FASEB J.21, 2551–2563 (2007). ArticleCASPubMed Google Scholar
Ritner, C. et al. An engineered cardiac reporter cell line identifies human embryonic stem cell-derived myocardial precursors. PLoS ONE6, e16004 (2011). ArticleCASPubMedPubMed Central Google Scholar
Hattori, F. et al. Nongenetic method for purifying stem cell-derived cardiomyocytes. Nat. Methods7, 61–66 (2010). ArticleCASPubMed Google Scholar
Elliot, D.A. et al. Nat. Methods, advance online publication, doi:10.1038/nmeth.1740 (23 October 2011).
Seiffert, M. et al. Signal-regulatory protein alpha (SIRPalpha) but not SIRPbeta is involved in T-cell activation, binds to CD47 with high affinity, and is expressed on immature CD34(+)CD38(-) hematopoietic cells. Blood97, 2741–2749 (2001). ArticleCASPubMed Google Scholar
Timms, J.F. et al. SHPS-1 is a scaffold for assembling distinct adhesion-regulated multi-protein complexes in macrophages. Curr. Biol.9, 927–930 (1999). ArticleCASPubMed Google Scholar
Subramanian, S., Parthasarathy, R., Sen, S., Boder, E.T. & Discher, D.E. Species- and cell type-specific interactions between CD47 and human SIRPalpha. Blood107, 2548–2556 (2006). ArticleCASPubMedPubMed Central Google Scholar
Nostro, M.C. et al. Stage-specific signaling through TGFbeta family members and WNT regulates patterning and pancreatic specification of human pluripotent stem cells. Development138, 861–871 (2011). ArticleCASPubMedPubMed Central Google Scholar
Park, I.H. et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature451, 141–146 (2008). ArticleCASPubMed Google Scholar
Matozaki, T., Murata, Y., Okazawa, H. & Ohnishi, H. Functions and molecular mechanisms of the CD47-SIRPalpha signalling pathway. Trends Cell Biol.19, 72–80 (2009). ArticleCASPubMed Google Scholar
Okazawa, H. et al. Negative regulation of phagocytosis in macrophages by the CD47-SHPS-1 system. J. Immunol.174, 2004–2011 (2005). ArticleCASPubMed Google Scholar
Carvajal-Vergara, X. et al. Patient-specific induced pluripotent stem-cell-derived models of LEOPARD syndrome. Nature465, 808–812 (2010). ArticleCASPubMedPubMed Central Google Scholar
Itzhaki, I. et al. Modelling the long QT syndrome with induced pluripotent stem cells. Nature471, 225–229 (2011). ArticleCASPubMed Google Scholar
Laflamme, M.A. et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat. Biotechnol.25, 1015–1024 (2007). ArticleCASPubMed Google Scholar
Kisselbach, L., Merges, M., Bossie, A. & Boyd, A. CD90 Expression on human primary cells and elimination of contaminating fibroblasts from cell cultures. Cytotechnology59, 31–44 (2009). ArticleCASPubMedPubMed Central Google Scholar
Ross, R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature362, 801–809 (1993). ArticleCASPubMed Google Scholar
Stevens, K.R. et al. Physiological function and transplantation of scaffold-free and vascularized human cardiac muscle tissue. Proc. Natl. Acad. Sci. USA106, 16568–16573 (2009). ArticleCASPubMedPubMed Central Google Scholar
Dvir, T. et al. Prevascularization of cardiac patch on the omentum improves its therapeutic outcome. Proc. Natl. Acad. Sci. USA106, 14990–14995 (2009). ArticleCASPubMedPubMed Central Google Scholar
Lesman, A. et al. Transplantation of a tissue-engineered human vascularized cardiac muscle. Tissue Eng. Part A16, 115–125 (2010). ArticleCASPubMed Google Scholar
Ling, Y., Maile, L.A., Lieskovska, J., Badley-Clarke, J. & Clemmons, D.R. Role of SHPS-1 in the regulation of insulin-like growth factor I-stimulated Shc and mitogen-activated protein kinase activation in vascular smooth muscle cells. Mol. Biol. Cell16, 3353–3364 (2005). ArticleCASPubMedPubMed Central Google Scholar
Kennedy, M., D'Souza, S.L., Lynch-Kattman, M., Schwantz, S. & Keller, G. Development of the hemangioblast defines the onset of hematopoiesis in human ES cell differentiation cultures. Blood109, 2679–2687 (2007). CASPubMedPubMed Central Google Scholar
Costa, M. et al. A method for genetic modification of human embryonic stem cells using electroporation. Nat. Protoc.2, 792–796 (2007). ArticleCASPubMed Google Scholar
Sharma, P., Shathasivam, T., Ignatchenko, V., Kislinger, T. & Gramolini, A.O. Identification of an FHL1 protein complex containing ACTN1, ACTN4, and PDLIM1 using affinity purifications and MS-based protein-protein interaction analysis. Mol. Biosyst.7, 1185–1196 (2011). ArticleCASPubMedPubMed Central Google Scholar
Seiffert, M. et al. Human signal-regulatory protein is expressed on normal, but not on subsets of leukemic myeloid cells and mediates cellular adhesion involving its counterreceptor CD47. Blood94, 3633–3643 (1999). CASPubMed Google Scholar