Systematic dissection and optimization of inducible enhancers in human cells using a massively parallel reporter assay (original) (raw)
References
Birney, E. et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature447, 799–816 (2007). ArticleCAS Google Scholar
Lander, E.S. Initial impact of the sequencing of the human genome. Nature470, 187–197 (2011). ArticleCAS Google Scholar
Dorer, D.E. & Nettelbeck, D.M. Targeting cancer by transcriptional control in cancer gene therapy and viral oncolysis. Adv. Drug Deliv. Rev.61, 554–571 (2009). ArticleCAS Google Scholar
Fan, F. & Wood, K.V. Bioluminescent assays for high-throughput screening. Assay Drug Dev. Technol.5, 127–136 CrossRef (2007). ArticleCAS Google Scholar
Loew, R., Heinz, N., Hampf, M., Bujard, H. & Gossen, M. Improved Tet-responsive promoters with minimized background expression. BMC Biotechnol.10, 81 (2010). Article Google Scholar
Carey, M., Peterson, C.L. & Smale, S.T. Transcriptional Regulation in Eukaryotes: Concepts, Strategies, and Techniques. Edn. 2 (Cold Spring Harbor Laboratory Press, 2009).
LeProust, E.M. et al. Synthesis of high-quality libraries of long (150mer) oligonucleotides by a novel depurination controlled process. Nucleic Acids Res.38, 2522–2540 (2010). ArticleCAS Google Scholar
Patwardhan, R.P. et al. High-resolution analysis of DNA regulatory elements by synthetic saturation mutagenesis. Nat. Biotechnol.27, 1173–1175 (2009). ArticleCAS Google Scholar
Kinney, J.B., Murugan, A., Callan, C.G. Jr. & Cox, E.C. Using deep sequencing to characterize the biophysical mechanism of a transcriptional regulatory sequence. Proc. Natl. Acad. Sci. USA107, 9158–9163 (2010). ArticleCAS Google Scholar
Panne, D., Maniatis, T. & Harrison, S.C. An atomic model of the interferon-beta enhanceosome. Cell129, 1111–1123 (2007). ArticleCAS Google Scholar
Arnosti, D.N. & Kulkarni, M.M. Transcriptional enhancers: Intelligent enhanceosomes or flexible billboards? J. Cell. Biochem.94, 890–898 (2005). ArticleCAS Google Scholar
Jonsson, J., Norberg, T., Carlsson, L., Gustafsson, C. & Wold, S. Quantitative sequence-activity models (QSAM)–tools for sequence design. Nucleic Acids Res.21, 733–739 (1993). ArticleCAS Google Scholar
Stormo, G.D., Schneider, T.D. & Gold, L. Quantitative analysis of the relationship between nucleotide sequence and functional activity. Nucleic Acids Res.14, 6661–6679 (1986). ArticleCAS Google Scholar
Mayr, B. & Montminy, M. Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat. Rev. Mol. Cell Biol.2, 599–609 (2001). ArticleCAS Google Scholar
Benbrook, D.M. & Jones, N.C. Different binding specificities and transactivation of variant CRE's by CREB complexes. Nucleic Acids Res.22, 1463–1469 (1994). ArticleCAS Google Scholar
Fink, J.S. et al. The CGTCA sequence motif is essential for biological activity of the vasoactive intestinal peptide gene cAMP-regulated enhancer. Proc. Natl. Acad. Sci. USA85, 6662–6666 (1988). ArticleCAS Google Scholar
Kunsch, C., Ruben, S.M. & Rosen, C.A. Selection of optimal kappa B/Rel DNA-binding motifs: interaction of both subunits of NF-kappa B with DNA is required for transcriptional activation. Mol. Cell. Biol.12, 4412–4421 (1992). ArticleCAS Google Scholar
Falvo, J.V., Parekh, B.S., Lin, C.H., Fraenkel, E. & Maniatis, T. Assembly of a functional beta interferon enhanceosome is dependent on ATF-2-c-jun heterodimer orientation. Mol. Cell. Biol.20, 4814–4825 (2000). ArticleCAS Google Scholar
Schneider, T.D. & Stormo, G.D. Excess information at bacteriophage T7 genomic promoters detected by a random cloning technique. Nucleic Acids Res.17, 659–674 (1989). ArticleCAS Google Scholar
Bishop, C.M. Pattern Recognition and Machine Learning (Springer, 2006).
De Mey, M., Maertens, J., Lequeux, G.J., Soetaert, W.K. & Vandamme, E.J. Construction and model-based analysis of a promoter library for E. coli: an indispensable tool for metabolic engineering. BMC Biotechnol.7, 34 (2007). Article Google Scholar
Quan, J. et al. Parallel on-chip gene synthesis and application to optimization of protein expression. Nat. Biotechnol.29, 449–452 (2011). ArticleCAS Google Scholar
Matzas, M. et al. High-fidelity gene synthesis by retrieval of sequence-verified DNA identified using high-throughput pyrosequencing. Nat. Biotechnol.28, 1291–1294 (2010). ArticleCAS Google Scholar
Bernstein, B.E. et al. The NIH Roadmap Epigenomics Mapping Consortium. Nat. Biotechnol.28, 1045–1048 (2010). ArticleCAS Google Scholar
Edelman, G.M., Meech, R., Owens, G.C. & Jones, F.S. Synthetic promoter elements obtained by nucleotide sequence variation and selection for activity. Proc. Natl. Acad. Sci. USA97, 3038–3043 (2000). ArticleCAS Google Scholar
Schlabach, M.R., Hu, J.K., Li, M. & Elledge, S.J. Synthetic design of strong promoters. Proc. Natl. Acad. Sci. USA107, 2538–2543 (2010). ArticleCAS Google Scholar
Holland, J.H. Adaptation in Natural and Artificial Systems: AN Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence Edn. 1 (MIT Press, 1992).
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J.R. Stat. Soc. B57, 289–300 (1995). Google Scholar
Treves, A. & Panzeri, S. The upward bias in measures of information derived from limited samples. Neural Comput.7, 399–407 (1995). Article Google Scholar