Fiore, A.E. et al. Prevention and control of influenza with vaccines: recommendations of the Advisory Committee on Immunization Practices (ACIP), 2010. MMWR Recomm. Rep.59, 1–62 (2010). PubMed Google Scholar
Doherty, P.C., Turner, S.J., Webby, R.G. & Thomas, P.G. Influenza and the challenge for immunology. Nat. Immunol.7, 449–455 (2006). ArticleCAS Google Scholar
Salomon, R. & Webster, R.G. The influenza virus enigma. Cell136, 402–410 (2009). ArticleCAS Google Scholar
Knipe, D.M., Howley, P.M., Griffin, D.E., Lamb, R.A. & Martin, M.A. Fields Virology (Lippincott Williams & Wilkins, 2006).
Tong, S. et al. A distinct lineage of influenza A virus from bats. Proc. Natl. Acad. Sci. USA109, 4269–4274 (2012). ArticleCAS Google Scholar
de Jong, J.C., Beyer, W.E., Palache, A.M., Rimmelzwaan, G.F. & Osterhaus, A.D. Mismatch between the 1997/1998 influenza vaccine and the major epidemic A(H3N2) virus strain as the cause of an inadequate vaccine-induced antibody response to this strain in the elderly. J. Med. Virol.61, 94–99 (2000). ArticleCAS Google Scholar
Ulmer, J.B., Valley, U. & Rappuoli, R. Vaccine manufacturing: challenges and solutions. Nat. Biotechnol.24, 1377–1383 (2006). ArticleCAS Google Scholar
Lambert, L.C. & Fauci, A.S. Influenza vaccines for the future. N. Engl. J. Med.363, 2036–2044 (2010). ArticleCAS Google Scholar
Nabel, G.J. & Fauci, A.S. Induction of unnatural immunity: prospects for a broadly protective universal influenza vaccine. Nat. Med.16, 1389–1391 (2010). ArticleCAS Google Scholar
Forde, G.M. Rapid-response vaccines—does DNA offer a solution? Nat. Biotechnol.23, 1059–1062 (2005). ArticleCAS Google Scholar
Liu, M.A. Immunologic basis of vaccine vectors. Immunity33, 504–515 (2010). ArticleCAS Google Scholar
Thalhamer, J., Weiss, R. & Scheiblhofer, S. Gene Vaccines (Springer, Wien and New York; 2011).
Hoerr, I., Obst, R., Rammensee, H.G. & Jung, G. In vivo application of RNA leads to induction of specific cytotoxic T lymphocytes and antibodies. Eur. J. Immunol.30, 1–7 (2000). ArticleCAS Google Scholar
Fotin-Mleczek, M. et al. Messenger RNA-based vaccines with dual activity induce balanced TLR-7 dependent adaptive immune responses and provide antitumor activity. J. Immunother.34, 1–15 (2011). ArticleCAS Google Scholar
Sebastian, M. et al. Messenger RNA vaccination in NSCLC: findings from a phase I/IIa clinical trial. J. Clin. Oncol.29 (suppl; abstr 2584) (2011). Article Google Scholar
Kübler, H. et al. Final analysis of a phase I/IIa study with CV9103, an intradermally administered prostate cancer immunotherapy based on self-adjuvanted mRNA. J. Clin. Oncol.29 (suppl; abstr 4535) (2011). Article Google Scholar
Potter, C.W. & Oxford, J.S. Determinants of immunity to influenza infection in man. Br. Med. Bull.35, 69–75 (1979). ArticleCAS Google Scholar
Plotkin, S.A. Vaccines: correlates of vaccine-induced immunity. Clin. Infect. Dis.47, 401–409 (2008). Article Google Scholar
Brown, D.M., Dilzer, A.M., Meents, D.L. & Swain, S.L. CD4 T cell-mediated protection from lethal influenza: perforin and antibody-mediated mechanisms give a one-two punch. J. Immunol.177, 2888–2898 (2006). ArticleCAS Google Scholar
Galli, G. et al. Adjuvanted H5N1 vaccine induces early CD4+ T cell response that predicts long-term persistence of protective antibody levels. Proc. Natl. Acad. Sci. USA106, 3877–3882 (2009). ArticleCAS Google Scholar
Hamada, H. et al. Tc17, a unique subset of CD8 T cells that can protect against lethal influenza challenge. J. Immunol.182, 3469–3481 (2009). ArticleCAS Google Scholar
Wilkinson, T.M. et al. Preexisting influenza-specific CD4+ T cells correlate with disease protection against influenza challenge in humans. Nat. Med.18, 274–280 (2012). ArticleCAS Google Scholar
Deng, Y., Yewdell, J.W., Eisenlohr, L.C. & Bennink, J.R. MHC affinity, peptide liberation, T cell repertoire, and immunodominance all contribute to the paucity of MHC class I-restricted peptides recognized by antiviral CTL. J. Immunol.158, 1507–1515 (1997). CASPubMed Google Scholar
Boon, A.C.M. et al. Cross-reactive neutralizing antibodies directed against pandemic H1N1 2009 virus are protective in a highly sensitive DBA/2 mouse influenza model. J. Virol.84, 7662–7667 (2010). ArticleCAS Google Scholar
McMichael, A.J., Gotch, F.M., Noble, G.R. & Beare, P.A. Cytotoxic T-cell immunity to influenza. N. Engl. J. Med.309, 13–17 (1983). ArticleCAS Google Scholar
Ulmer, J.B. et al. Heterologous protection against influenza by injection of DNA encoding a viral protein. Science259, 1745–1749 (1993). ArticleCAS Google Scholar
Rimmelzwaan, G.F., Fouchier, R.A.M. & Osterhaus, A.D.M.E. Influenza virus-specific cytotoxic T lymphocytes: a correlate of protection and a basis for vaccine development. Curr. Opin. Biotechnol.18, 529–536 (2007). ArticleCAS Google Scholar
Kistner, O. et al. A whole virus pandemic influenza H1N1 vaccine is highly immunogenic and protective in active immunization and passive protection mouse models. PLoS ONE5, e9349 (2010). Article Google Scholar
Chaloupka, I., Schuler, A., Marschall, M. & Meier-Ewert, H. Comparative analysis of six European influenza vaccines. Eur. J. Clin. Microbiol. Infect. Dis.15, 121–127 (1996). ArticleCAS Google Scholar
Belshe, R.B. Translational research on vaccines: influenza as an example. Clin. Pharmacol. Ther.82, 745–749 (2007). ArticleCAS Google Scholar
van der Laan, J.W. et al. Animal models in influenza vaccine testing. Expert Rev. Vaccines7, 783–793 (2008). ArticleCAS Google Scholar
Van Reeth, K., Labarque, G., De Clercq, S. & Pensaert, M. Efficacy of vaccination of pigs with different H1N1 swine influenza viruses using a recent challenge strain and different parameters of protection. Vaccine19, 4479–4486 (2001). ArticleCAS Google Scholar
Pyo, H.-M. et al. Pandemic H1N1 influenza virus-like particles are immunogenic and provide protective immunity to pigs. Vaccine30, 1297–1304 (2012). ArticleCAS Google Scholar
Lefevre, E.A. et al. Immune responses in pigs vaccinated with adjuvanted and non-adjuvanted A(H1N1)pdm/09 influenza vaccines used in human immunization programmes. PLoS ONE7, e32400 (2012). ArticleCAS Google Scholar
Laurent, P.E. et al. Evaluation of the clinical performance of a new intradermal vaccine administration technique and associated delivery system. Vaccine25, 8833–8842 (2007). ArticleCAS Google Scholar
Dormitzer, P.R., Ulmer, J.B. & Rappuoli, R. Structure-based antigen design: a strategy for next generation vaccines. Trends Biotechnol.26, 659–667 (2008). ArticleCAS Google Scholar
Johansson, D.X., Ljungberg, K., Kakoulidou, M. & Liljeström, P. Intradermal electroporation of naked replicon RNA elicits strong immune responses. PLoS ONE7, e29732 (2012). ArticleCAS Google Scholar
Fotin-Mleczek, M. et al. Highly potent mRNA based cancer vaccines represent an attractive platform for combination therapies supporting an improved therapeutic effect. J. Gene Med.14, 428–439 (2012). ArticleCAS Google Scholar
Schlake, T. et al. Developing mRNA-vaccine technologies. RNA Biol. (in the press) (2012). ArticleCAS Google Scholar
Pascolo, S. Vaccination with messenger RNA. Methods Mol. Med.127, 23–40 (2006). CASPubMed Google Scholar
Pascolo, S. Vaccination with messenger RNA (mRNA). Handb. Exp. Pharmacol. 221–235 (2008) doi:10.1007/978-3-540-72167-3_11. Chapter Google Scholar
Reed, L.J. & Muench, H. A simple method of estimation of fifty percent end points. Am. J. Hyg.27, 493–497 (1938). Google Scholar
Hai, R. et al. PB1-F2 expression by the 2009 pandemic H1N1 influenza virus has minimal impact on virulence in animal models. J. Virol.84, 4442–4450 (2010). ArticleCAS Google Scholar
Cobbold, S.P., Jayasuriya, A., Nash, A., Prospero, T.D. & Waldmann, H. Therapy with monoclonal antibodies by elimination of T-cell subsets in vivo. Nature312, 548–551 (1984). ArticleCAS Google Scholar
Lange, E. et al. Pathogenesis and transmission of the novel swine-origin influenza virus A/H1N1 after experimental infection of pigs. J. Gen. Virol.90, 2119–2123 (2009). ArticleCAS Google Scholar
Hoffmann, B. et al. New real-time reverse transcriptase polymerase chain reactions facilitate detection and differentiation of novel A/H1N1 influenza virus in porcine and human samples. Berl. Munch. Tierarztl. Wochenschr.123, 286–292 (2010). CASPubMed Google Scholar