Three decades of nanopore sequencing (original) (raw)

References

  1. Walker, B., Kasianowicz, J., Krishnasastry, M. & Bayley, H. A pore-forming protein with a metal-actuated switch. Protein Eng. 7, 655–662 (1994).
    Article CAS Google Scholar
  2. Menestrina, G. Ionic channels formed by Staphylococcus aureus alpha-toxin: voltage-dependent inhibition by divalent and trivalent cations. J. Membr. Biol. 90, 177–190 (1986).
    Article CAS Google Scholar
  3. Bezrukov, S.M. & Kasianowicz, J.J. Current noise reveals protonation kinetics and number of ionizable sites in an open protein ion channel. Phys. Rev. Lett. 70, 2352–2355 (1993).
    Article CAS Google Scholar
  4. Bezrukov, S.M., Vodyanoy, I., Brutyan, R.A. & Kasianowicz, J.J. Dynamics and free energy of polymers partitioning into a nanoscale pore. Macromolecules 29, 8517–8522 (1996).
    Article CAS Google Scholar
  5. Song, L. et al. Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore. Science 274, 1859–1866 (1996).
    Article CAS Google Scholar
  6. Kasianowicz, J.J., Brandin, E., Branton, D. & Deamer, D.W. Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl. Acad. Sci. USA 93, 13770–13773 (1996).
    Article CAS Google Scholar
  7. Akeson, M., Branton, D., Kasianowicz, J.J., Brandin, E. & Deamer, D.W. Microsecond time-scale discrimination among polycytidylic acid, polyadenylic acid, and polyuridylic acid as homopolymers or as segments within single RNA molecules. Biophys. J. 77, 3227–3233 (1999).
    Article CAS Google Scholar
  8. Meller, A., Nivon, L., Brandin, E., Golovchenko, J. & Branton, D. Rapid nanopore discrimination between single polynucleotide molecules. Proc. Natl. Acad. Sci. USA 97, 1079–1084 (2000).
    Article CAS Google Scholar
  9. Wang, H., Dunning, J.E., Huang, A.P.-H., Nyamwanda, J.A. & Branton, D. DNA heterogeneity and phosphorylation unveiled by single-molecule electrophoresis. Proc. Natl. Acad. Sci. USA 101, 13472–13477 (2004).
    Article CAS Google Scholar
  10. Mathé, J., Aksimentiev, A., Nelson, D.R., Schulten, K. & Meller, A. Orientation discrimination of single-stranded DNA inside the alpha-hemolysin membrane channel. Proc. Natl. Acad. Sci. USA 102, 12377–12382 (2005).
    Article Google Scholar
  11. Butler, T.Z., Gundlach, J.H. & Troll, M.A. Determination of RNA orientation during translocation through a biological nanopore. Biophys. J. 90, 190–199 (2006).
    Article CAS Google Scholar
  12. Ashkenasy, N., Sánchez-Quesada, J., Bayley, H. & Ghadiri, M.R. Recognizing a single base in an individual DNA strand: a step toward DNA sequencing in nanopores. Angew. Chem. Int. Ed. 44, 1401–1404 (2005).
    Article CAS Google Scholar
  13. Stoddart, D., Heron, A.J., Mikhailova, E., Maglia, G. & Bayley, H. Single-nucleotide discrimination in immobilized DNA oligonucleotides with a biological nanopore. Proc. Natl. Acad. Sci. USA 106, 7702–7707 (2009).
    Article CAS Google Scholar
  14. Stoddart, D. et al. Nucleobase recognition in ssDNA at the central constriction of the alpha-hemolysin pore. Nano Lett. 10, 3633–3637 (2010).
    Article CAS Google Scholar
  15. Stoddart, D., Maglia, G., Mikhailova, E., Heron, A.J. & Bayley, H. Multiple base-recognition sites in a biological nanopore: two heads are better than one. Angew. Chem. Int. Ed. 49, 556–559 (2010).
    Article CAS Google Scholar
  16. Church, G., Deamer, D., Branton, D., Baldarelli, R. & Kasianowicz, J. Characterization of individual polymer molecules based on monomer-interface interactions. US patent 5,795,782 (1998).
  17. Benner, S. et al. Sequence-specific detection of individual DNA polymerase complexes in real time using a nanopore. Nat. Nanotechnol. 2, 718–724 (2007).
    Article CAS Google Scholar
  18. Hornblower, B. et al. Single-molecule analysis of DNA-protein complexes using nanopores. Nat. Methods 4, 315–317 (2007).
    Article CAS Google Scholar
  19. Cockroft, S.L., Chu, J., Amorin, M. & Ghadiri, M.R. A single-molecule nanopore device detects DNA polymerase activity with single-nucleotide resolution. J. Am. Chem. Soc. 130, 818–820 (2008).
    Article CAS Google Scholar
  20. Olasagasti, F. et al. Replication of individual DNA molecules under electronic control using a protein nanopore. Nat. Nanotechnol. 5, 798–806 (2010).
    Article CAS Google Scholar
  21. Chu, J., González-López, M., Cockroft, S.L., Amorin, M. & Ghadiri, M.R. Real-time monitoring of DNA polymerase function and stepwise single-nucleotide DNA strand translocation through a protein nanopore. Angew. Chem. 49, 10106–10109 (2010).
    Article CAS Google Scholar
  22. Lieberman, K.R. et al. Processive replication of single DNA molecules in a nanopore catalyzed by phi29 DNA polymerase. J. Am. Chem. Soc. 132, 17961–17972 (2010).
    Article CAS Google Scholar
  23. Cherf, G.M. et al. Automated forward and reverse ratcheting of DNA in a nanopore at 5-Å precision. Nat. Biotechnol. 30, 344–348 (2012).
    Article CAS Google Scholar
  24. Manrao, E.A. et al. Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase. Nat. Biotechnol. 30, 349–353 (2012).
    Article CAS Google Scholar
  25. Laszlo, A.H. et al. Detection and mapping of 5-methylcytosine and 5-hydroxymethylcytosine with nanopore MspA. Proc. Natl. Acad. Sci. USA 110, 18904–18909 (2013).
    Article CAS Google Scholar
  26. Schreiber, J. et al. Error rates for nanopore discrimination among cytosine, methylcytosine, and hydroxymethylcytosine along individual DNA strands. Proc. Natl. Acad. Sci. USA 110, 18910–18915 (2013).
    Article CAS Google Scholar
  27. Laszlo, A.H. et al. Decoding long nanopore sequencing reads of natural DNA. Nat. Biotechnol. 32, 829–833 (2014).
    Article CAS Google Scholar
  28. Wescoe, Z.L., Schreiber, J. & Akeson, M. Nanopores discriminate among five C5-cytosine variants in DNA. J. Am. Chem. Soc. 136, 16582–16587 (2014).
    Article CAS Google Scholar
  29. Meller, A., Nivon, L. & Branton, D. Voltage-driven DNA translocations through a nanopore. Phys. Rev. Lett. 86, 3435–3438 (2001).
    Article CAS Google Scholar
  30. Niederweis, M. et al. Cloning of the mspA gene encoding a porin from Mycobacterium smegmatis. Mol. Microbiol. 33, 933–945 (1999).
    Article CAS Google Scholar
  31. Trias, J. & Benz, R. Permeability of the cell wall of Mycobacterium smegmatis. Mol. Microbiol. 14, 283–290 (1994).
    Article CAS Google Scholar
  32. Faller, M., Niederweis, M. & Schulz, G.E. The structure of a mycobacterial outer-membrane channel. Science 303, 1189–1192 (2004).
    Article CAS Google Scholar
  33. Butler, T.Z., Pavlenok, M., Derrington, I.M., Niederweis, M. & Gundlach, J.H. Single-molecule DNA detection with an engineered MspA protein nanopore. Proc. Natl. Acad. Sci. USA 105, 20647–20652 (2008).
    Article CAS Google Scholar
  34. Derrington, I.M. et al. Nanopore DNA sequencing with MspA. Proc. Natl. Acad. Sci. USA 107, 16060–16065 (2010).
    Article CAS Google Scholar
  35. Jain, M. et al. Improved data analysis for the MinION nanopore sequencer. Nat. Methods 12, 351–356 (2015).
    Article CAS Google Scholar
  36. Ip, C.L.C. et al. MinION Analysis and Reference Consortium: phase 1 data release and analysis. F1000Res. 4, 1075 (2015).
    Article Google Scholar
  37. Loman, N.J., Quick, J. & Simpson, J.T. A complete bacterial genome assembled de novo using only nanopore sequencing data. Nat. Methods 12, 733–735 (2015).
    Article CAS Google Scholar
  38. Madoui, M.-A. et al. Genome assembly using Nanopore-guided long and error-free DNA reads. BMC Genomics 16, 327 (2015).
    Article Google Scholar
  39. Szalay, T. & Golovchenko, J.A. De novo sequencing and variant calling with nanopores using PoreSeq. Nat. Biotechnol. 33, 1087–1091 (2015).
    Article CAS Google Scholar
  40. Ashton, P.M. et al. MinION nanopore sequencing identifies the position and structure of a bacterial antibiotic resistance island. Nat. Biotechnol. 33, 296–300 (2015).
    Article CAS Google Scholar
  41. Quick, J., Quinlan, A.R. & Loman, N.J. A reference bacterial genome dataset generated on the MinION™ portable single-molecule nanopore sequencer. Gigascience 3, 22 (2014).
    Article Google Scholar
  42. Bolisetty, M.T., Rajadinakaran, G. & Graveley, B.R. Determining exon connectivity in complex mRNAs by nanopore sequencing. Genome Biol. 16, 204 (2015).
    Article Google Scholar
  43. Norris, A.L., Workman, R.E., Fan, Y., Eshleman, J.R. & Timp, W. Nanopore sequencing detects structural variants in cancer. Cancer Biol. Ther. 10.1080/15384047.2016.1139236 (19 January 2016).
  44. Peters, B.A. et al. Accurate whole-genome sequencing and haplotyping from 10 to 20 human cells. Nature 487, 190–195 (2012).
    Article CAS Google Scholar
  45. Bhattacharya, S. et al. Molecular dynamics study of MspA arginine mutants predicts slow DNA translocations and ion current blockades indicative of DNA sequence. ACS Nano 6, 6960–6968 (2012).
    Article CAS Google Scholar
  46. Manrao, E.A., Derrington, I.M., Pavlenok, M., Niederweis, M. & Gundlach, J.H. Nucleotide discrimination with DNA immobilized in the MspA nanopore. PLoS One 6, e25723 (2011).
    Article CAS Google Scholar
  47. Viterbi, A.J. Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Trans. Inf. Theory 13, 260–269 (1967).
    Article Google Scholar
  48. Timp, W., Comer, J. & Aksimentiev, A. DNA base-calling from a nanopore using a Viterbi algorithm. Biophys. J. 102, L37–L39 (2012).
    Article CAS Google Scholar
  49. Kuan, A.T., Lu, B., Xie, P., Szalay, T. & Golovchenko, J.A. Electrical pulse fabrication of graphene nanopores in electrolyte solution. Appl. Phys. Lett. 106, 203109 (2015).
    Article Google Scholar
  50. Garaj, S., Liu, S., Golovchenko, J.A. & Branton, D. Molecule-hugging graphene nanopores. Proc. Natl. Acad. Sci. USA 110, 12192–12196 (2013).
    Article CAS Google Scholar
  51. Gershow, M. & Golovchenko, J.A. Recapturing and trapping single molecules with a solid-state nanopore. Nat. Nanotechnol. 2, 775–779 (2007).
    Article CAS Google Scholar
  52. Goyal, P. et al. Structural and mechanistic insights into the bacterial amyloid secretion channel CsgG. Nature 516, 250–253 (2014).
    Article CAS Google Scholar
  53. Hoenen, T. et al. Nanopore sequencing as a rapidly deployable Ebola outbreak tool. Emerg. Infect. Dis. 22, 331–334 (2016).
    Article CAS Google Scholar
  54. Quick, J. et al. Real-time, portable genome sequencing for Ebola surveillance. Nature 10.1038/nature16996 (3 February 2016).

Download references