Three decades of nanopore sequencing (original) (raw)
References
Walker, B., Kasianowicz, J., Krishnasastry, M. & Bayley, H. A pore-forming protein with a metal-actuated switch. Protein Eng.7, 655–662 (1994). ArticleCAS Google Scholar
Menestrina, G. Ionic channels formed by Staphylococcus aureus alpha-toxin: voltage-dependent inhibition by divalent and trivalent cations. J. Membr. Biol.90, 177–190 (1986). ArticleCAS Google Scholar
Bezrukov, S.M. & Kasianowicz, J.J. Current noise reveals protonation kinetics and number of ionizable sites in an open protein ion channel. Phys. Rev. Lett.70, 2352–2355 (1993). ArticleCAS Google Scholar
Bezrukov, S.M., Vodyanoy, I., Brutyan, R.A. & Kasianowicz, J.J. Dynamics and free energy of polymers partitioning into a nanoscale pore. Macromolecules29, 8517–8522 (1996). ArticleCAS Google Scholar
Song, L. et al. Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore. Science274, 1859–1866 (1996). ArticleCAS Google Scholar
Kasianowicz, J.J., Brandin, E., Branton, D. & Deamer, D.W. Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl. Acad. Sci. USA93, 13770–13773 (1996). ArticleCAS Google Scholar
Akeson, M., Branton, D., Kasianowicz, J.J., Brandin, E. & Deamer, D.W. Microsecond time-scale discrimination among polycytidylic acid, polyadenylic acid, and polyuridylic acid as homopolymers or as segments within single RNA molecules. Biophys. J.77, 3227–3233 (1999). ArticleCAS Google Scholar
Meller, A., Nivon, L., Brandin, E., Golovchenko, J. & Branton, D. Rapid nanopore discrimination between single polynucleotide molecules. Proc. Natl. Acad. Sci. USA97, 1079–1084 (2000). ArticleCAS Google Scholar
Wang, H., Dunning, J.E., Huang, A.P.-H., Nyamwanda, J.A. & Branton, D. DNA heterogeneity and phosphorylation unveiled by single-molecule electrophoresis. Proc. Natl. Acad. Sci. USA101, 13472–13477 (2004). ArticleCAS Google Scholar
Mathé, J., Aksimentiev, A., Nelson, D.R., Schulten, K. & Meller, A. Orientation discrimination of single-stranded DNA inside the alpha-hemolysin membrane channel. Proc. Natl. Acad. Sci. USA102, 12377–12382 (2005). Article Google Scholar
Butler, T.Z., Gundlach, J.H. & Troll, M.A. Determination of RNA orientation during translocation through a biological nanopore. Biophys. J.90, 190–199 (2006). ArticleCAS Google Scholar
Ashkenasy, N., Sánchez-Quesada, J., Bayley, H. & Ghadiri, M.R. Recognizing a single base in an individual DNA strand: a step toward DNA sequencing in nanopores. Angew. Chem. Int. Ed.44, 1401–1404 (2005). ArticleCAS Google Scholar
Stoddart, D., Heron, A.J., Mikhailova, E., Maglia, G. & Bayley, H. Single-nucleotide discrimination in immobilized DNA oligonucleotides with a biological nanopore. Proc. Natl. Acad. Sci. USA106, 7702–7707 (2009). ArticleCAS Google Scholar
Stoddart, D. et al. Nucleobase recognition in ssDNA at the central constriction of the alpha-hemolysin pore. Nano Lett.10, 3633–3637 (2010). ArticleCAS Google Scholar
Stoddart, D., Maglia, G., Mikhailova, E., Heron, A.J. & Bayley, H. Multiple base-recognition sites in a biological nanopore: two heads are better than one. Angew. Chem. Int. Ed.49, 556–559 (2010). ArticleCAS Google Scholar
Church, G., Deamer, D., Branton, D., Baldarelli, R. & Kasianowicz, J. Characterization of individual polymer molecules based on monomer-interface interactions. US patent 5,795,782 (1998).
Benner, S. et al. Sequence-specific detection of individual DNA polymerase complexes in real time using a nanopore. Nat. Nanotechnol.2, 718–724 (2007). ArticleCAS Google Scholar
Hornblower, B. et al. Single-molecule analysis of DNA-protein complexes using nanopores. Nat. Methods4, 315–317 (2007). ArticleCAS Google Scholar
Cockroft, S.L., Chu, J., Amorin, M. & Ghadiri, M.R. A single-molecule nanopore device detects DNA polymerase activity with single-nucleotide resolution. J. Am. Chem. Soc.130, 818–820 (2008). ArticleCAS Google Scholar
Olasagasti, F. et al. Replication of individual DNA molecules under electronic control using a protein nanopore. Nat. Nanotechnol.5, 798–806 (2010). ArticleCAS Google Scholar
Chu, J., González-López, M., Cockroft, S.L., Amorin, M. & Ghadiri, M.R. Real-time monitoring of DNA polymerase function and stepwise single-nucleotide DNA strand translocation through a protein nanopore. Angew. Chem.49, 10106–10109 (2010). ArticleCAS Google Scholar
Lieberman, K.R. et al. Processive replication of single DNA molecules in a nanopore catalyzed by phi29 DNA polymerase. J. Am. Chem. Soc.132, 17961–17972 (2010). ArticleCAS Google Scholar
Cherf, G.M. et al. Automated forward and reverse ratcheting of DNA in a nanopore at 5-Å precision. Nat. Biotechnol.30, 344–348 (2012). ArticleCAS Google Scholar
Manrao, E.A. et al. Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase. Nat. Biotechnol.30, 349–353 (2012). ArticleCAS Google Scholar
Laszlo, A.H. et al. Detection and mapping of 5-methylcytosine and 5-hydroxymethylcytosine with nanopore MspA. Proc. Natl. Acad. Sci. USA110, 18904–18909 (2013). ArticleCAS Google Scholar
Schreiber, J. et al. Error rates for nanopore discrimination among cytosine, methylcytosine, and hydroxymethylcytosine along individual DNA strands. Proc. Natl. Acad. Sci. USA110, 18910–18915 (2013). ArticleCAS Google Scholar
Laszlo, A.H. et al. Decoding long nanopore sequencing reads of natural DNA. Nat. Biotechnol.32, 829–833 (2014). ArticleCAS Google Scholar
Wescoe, Z.L., Schreiber, J. & Akeson, M. Nanopores discriminate among five C5-cytosine variants in DNA. J. Am. Chem. Soc.136, 16582–16587 (2014). ArticleCAS Google Scholar
Meller, A., Nivon, L. & Branton, D. Voltage-driven DNA translocations through a nanopore. Phys. Rev. Lett.86, 3435–3438 (2001). ArticleCAS Google Scholar
Niederweis, M. et al. Cloning of the mspA gene encoding a porin from Mycobacterium smegmatis. Mol. Microbiol.33, 933–945 (1999). ArticleCAS Google Scholar
Trias, J. & Benz, R. Permeability of the cell wall of Mycobacterium smegmatis. Mol. Microbiol.14, 283–290 (1994). ArticleCAS Google Scholar
Faller, M., Niederweis, M. & Schulz, G.E. The structure of a mycobacterial outer-membrane channel. Science303, 1189–1192 (2004). ArticleCAS Google Scholar
Butler, T.Z., Pavlenok, M., Derrington, I.M., Niederweis, M. & Gundlach, J.H. Single-molecule DNA detection with an engineered MspA protein nanopore. Proc. Natl. Acad. Sci. USA105, 20647–20652 (2008). ArticleCAS Google Scholar
Derrington, I.M. et al. Nanopore DNA sequencing with MspA. Proc. Natl. Acad. Sci. USA107, 16060–16065 (2010). ArticleCAS Google Scholar
Jain, M. et al. Improved data analysis for the MinION nanopore sequencer. Nat. Methods12, 351–356 (2015). ArticleCAS Google Scholar
Ip, C.L.C. et al. MinION Analysis and Reference Consortium: phase 1 data release and analysis. F1000Res.4, 1075 (2015). Article Google Scholar
Loman, N.J., Quick, J. & Simpson, J.T. A complete bacterial genome assembled de novo using only nanopore sequencing data. Nat. Methods12, 733–735 (2015). ArticleCAS Google Scholar
Madoui, M.-A. et al. Genome assembly using Nanopore-guided long and error-free DNA reads. BMC Genomics16, 327 (2015). Article Google Scholar
Szalay, T. & Golovchenko, J.A. De novo sequencing and variant calling with nanopores using PoreSeq. Nat. Biotechnol.33, 1087–1091 (2015). ArticleCAS Google Scholar
Ashton, P.M. et al. MinION nanopore sequencing identifies the position and structure of a bacterial antibiotic resistance island. Nat. Biotechnol.33, 296–300 (2015). ArticleCAS Google Scholar
Quick, J., Quinlan, A.R. & Loman, N.J. A reference bacterial genome dataset generated on the MinION™ portable single-molecule nanopore sequencer. Gigascience3, 22 (2014). Article Google Scholar
Bolisetty, M.T., Rajadinakaran, G. & Graveley, B.R. Determining exon connectivity in complex mRNAs by nanopore sequencing. Genome Biol.16, 204 (2015). Article Google Scholar
Norris, A.L., Workman, R.E., Fan, Y., Eshleman, J.R. & Timp, W. Nanopore sequencing detects structural variants in cancer. Cancer Biol. Ther. 10.1080/15384047.2016.1139236 (19 January 2016).
Peters, B.A. et al. Accurate whole-genome sequencing and haplotyping from 10 to 20 human cells. Nature487, 190–195 (2012). ArticleCAS Google Scholar
Bhattacharya, S. et al. Molecular dynamics study of MspA arginine mutants predicts slow DNA translocations and ion current blockades indicative of DNA sequence. ACS Nano6, 6960–6968 (2012). ArticleCAS Google Scholar
Manrao, E.A., Derrington, I.M., Pavlenok, M., Niederweis, M. & Gundlach, J.H. Nucleotide discrimination with DNA immobilized in the MspA nanopore. PLoS One6, e25723 (2011). ArticleCAS Google Scholar
Viterbi, A.J. Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Trans. Inf. Theory13, 260–269 (1967). Article Google Scholar
Timp, W., Comer, J. & Aksimentiev, A. DNA base-calling from a nanopore using a Viterbi algorithm. Biophys. J.102, L37–L39 (2012). ArticleCAS Google Scholar
Kuan, A.T., Lu, B., Xie, P., Szalay, T. & Golovchenko, J.A. Electrical pulse fabrication of graphene nanopores in electrolyte solution. Appl. Phys. Lett.106, 203109 (2015). Article Google Scholar
Garaj, S., Liu, S., Golovchenko, J.A. & Branton, D. Molecule-hugging graphene nanopores. Proc. Natl. Acad. Sci. USA110, 12192–12196 (2013). ArticleCAS Google Scholar
Gershow, M. & Golovchenko, J.A. Recapturing and trapping single molecules with a solid-state nanopore. Nat. Nanotechnol.2, 775–779 (2007). ArticleCAS Google Scholar
Goyal, P. et al. Structural and mechanistic insights into the bacterial amyloid secretion channel CsgG. Nature516, 250–253 (2014). ArticleCAS Google Scholar
Hoenen, T. et al. Nanopore sequencing as a rapidly deployable Ebola outbreak tool. Emerg. Infect. Dis.22, 331–334 (2016). ArticleCAS Google Scholar
Quick, J. et al. Real-time, portable genome sequencing for Ebola surveillance. Nature 10.1038/nature16996 (3 February 2016).