In vivo electrically mediated protein and gene transfer in murine melanoma (original) (raw)
References
Crystal, R.G. 1995. Transfer of genes to humans: early lessons and obstacles to success. Science270:404-410. ArticleCAS Google Scholar
Culver, K.W. and Blaese, P.M. 1994. Gene therapy for cancer. Trends Genet.10: 174–178. Article Google Scholar
Herlyn, M. and Schuchter, L. 1996. Gene therapy–strategies and perspectives. The Skin Cancer Foundation Journal14: 41. Google Scholar
Nabel, G.J., Nabel, E.G., Yang, Z.Y., Fox, B.A., Plautz, G.E., Gao, X., et al. 1993. Direct gene transfer with DNA–liposome complexes in melanoma: Expression, biologic activity and lack of toxicity in humans. Proc. Natl. Acad. Sci. USA90: 11307–11311. Article Google Scholar
Liu, Y., Mounkes, L.C., Liggit, H.D. Brown, C.S., Solodin, I., Heath, T.D., and Bebs, R.J. 1997. Factors influencing the efficiency of cationic liposome-mediated intravenous gene delivery. Bio/Technology15: 167–173. Google Scholar
Neumann, E., Schaefer-Ridder, M., Wang, Y and Hofschneider, P.M. 1982. Gene transfer in mouse lyoma cells by electroporation in high electric fields. EMBO J.1: 841–845. Article Google Scholar
Wolf, H., Rols, M.P., Boldt, E. Neumann E., and Teissie, J. 1994. Control by pulse parameters of electric field mediated gene transfer in mammalian cells. Biophys. J., 66: 524–531. Article Google Scholar
Tsong, T.Y. 1991. Electroporation of cell membranes. Biophys. J.60: 297–306. Article Google Scholar
Deuticke, B. and Schwister, K. 1989. Leaks induced by electrical breakdown in the erythrocyte membrane, pp. 127–148 in Electroporation and electrofusion in cell biology. Neumann, E., Sowers, A.E., and Jordan, C.A. (eds.), Plenum Press. New York. Chapter Google Scholar
Marszalek, P., Liu, D.S ., and Tsong, T.Y. 1990. Schwan equation and transmem–brane potential induced by alternating electric field. Biophys. J.58: 1053–1058. Article Google Scholar
Genco, I., Gliozzi, A., Relini, A., Robello, M., and Scalas, E. 1993. Electroporation in symmetric and asymmetric membranes. Biochim. Biophys. Acta.1149: 10–18. Article Google Scholar
Teissie, J. and Rols,M.P. 1993. An experimental evaluation of the critical potential difference inducing cell membrane electropermeabilization. Biophys. J.65: 409–413. Article Google Scholar
Tekle, E., Astumian, R.D., and Chock, P.B. 1994. Selective and asymmetric molecular transport across electioporated membranes. Proc. Natl. Acad. Sci. USA91: 11512–11516. Article Google Scholar
Domenge, C., Orlowski, S., Luboinski, B., De Baere, T., Schwaab, G., Belehradek, J. Jr., et al. 1996. Antitumor Electrochemotherapy: new advances in the clinical protocol. Cancer77: 956–962. Article Google Scholar
Belehradek, M., Domenge, C.., Luboinski, B.., Orlowski, S., Belehradek, J. Jr ., and Mir, L.M. 1993. Electrochenfjotherapy, a new antitumor treatment: first clinical phase I–II trial. Cancer72: 3612–3700. Article Google Scholar
Mir, L.M., Orlowski, S..,, Belehradek, Jr., Teissie, J., Rols, M.P, Sersa, G., et al. 1995. Biomedical applications of electric pulses with special emphasis on antitumor electrochemotherapy. Bfoelectrochem. Bioenerg.38: 203–207. Article Google Scholar
Titomorov, A.V., Sukharev, S., and Kistanova, E. 1991. In vivo electroporation and stable transformation of skin cells of new born mice by plasmid DNA. Biochim. Biophys. Acta1088: 131–134. Article Google Scholar
Heller, R., Jaroszeski, M.,, Atkin, A., Moradpour, D., Gilbert, R., Wands, J., and Nicolau, C. 1996. In vivo gene electroinjection and expression in rat liver. FEBS Lett.389: 225–228. Article Google Scholar
Nishi, T, Yoshizato, K., Yamashiro, S., Takeshima, H., Sata, K., Hamada, K., et al. 1996. High–efficiency in vivo gene transfer using intraarterial plasmid DNA injection following in vivo electrqporation. Cancer Res.56: 1050–1055. Google Scholar
Dagher, S.F., Conrad, S.E., Werner, E.A. and Patterson, R.J. Phenotypic conversion of TK deficient cells following electroporation of functional TK enzyme. Exp. Cell Res.198, 36–42, 1991 Article Google Scholar
Goldman, C K., Soroceanu, L., Smith, N., Gillespie, Y., Shaw, W., Burgess, S., et al. 1997. In vitro and in vivo gene delivery mediated by a synthetic polycationic amino polymer. Bio/Technology15: 462–466. Google Scholar
Rols, M.P. and Teissie, J. Flow cytometry quantification of electropermeabilization. In Methods in molecular biology: flow cytometry protocols. Jaroszeski, M.J. and Heller, R. (eds.), Humana Press Inc, Totowa, NJ. In press.
Rols, M.P. and Teissié, J. 1990. Electropermeabilization of mammalian cells. Quantitative analysis of the phenomenon. Biophys.. 58: 1089–1098. Google Scholar
Rols, M.P., Femenia, P., and Teissié, J. 1995. Long lived macropinocytosis takes place in electropermeabilized mammalian cells. Biochem. Biophys. Res. Comm. 208: 26–35. Article Google Scholar
Rols, M.P., Coulet, D., and Teissié, J. 1992. Highly efficient transfection of mammalian cells by electric field pulses. Application to large volumes of cell culture by using a flow system. Eur. J. Biochem. 206: 115–121. Article Google Scholar
Rols, M.P., Delteil, C., Serin, G., and Teissie, J. 1994. Temperature effects on electrotransfection of mammalian cells. Nucl. Acids Res. 22: 540. Article Google Scholar
Sersa, G., Cemazar, M., Semrov, D., and Miklavcic, D. 1996. Changing electrode orientation improves the efficacy of Electrochemotherapy of solid tumors in mice. Bioelectrochem. Bioenerg. 39: 61–66. Article Google Scholar
Prautnitz,, M.R. 1996. The effects of electric current applied to skin: a review for transdermal drug delivery. Advanced Drug Delivery Reviews. 18: 395–425. Article Google Scholar
Gilbert, R., Jaroszeski, M., and Heller, R. 1996. Novel electrodes designs for electrochemotherapy. Biochim. Biophys. Acta.1334: 9–14. Article Google Scholar
Heller, R., Jaroszeski, M., Leo-Massina, J., Perrot, R., Van Voorhis, N., Reintgen, D., and Gilbert, R. 1995. Treatment of B16 mouse melanoma with the combination of electropermeabilization and chemiotherapy. Bioelectrochem. Bioenerg.36: 83–87. Article Google Scholar
Bradford, M. 1976. A rapid and sensitive method for the quantitation of micro–gram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem.72: 248–254. Article Google Scholar