Tumor antigen–specific induction of transcriptionally targeted retroviral vectors from chimeric immune receptor–modified T cells (original) (raw)
Verma, I. & Somia, N. Gene therapy—promises, problems and prospects. Nature389, 239–242 (1997). ArticleCAS Google Scholar
Vile, R.G., Russell, S.J. & Lemoine, N.R. Cancer gene therapy: hard lessons and new courses. Gene Ther.7, 2–8 (2000). ArticleCAS Google Scholar
Russell, S.J. & Cosset, F.-J. Modifying the host range properties of retroviral vectors. J. Gene Med.1, 300–311 (1999). ArticleCAS Google Scholar
Grill, J. et al. Combined targeting of adenoviruses to integrins and epidermal growth factor receptors increases gene transfer into primary glioma cells and spheroids. Clin. Cancer Res.7, 641–650 (2001). CASPubMed Google Scholar
Krasnykh, V., Belousova, N., Korokhov, N., Mikheeva, G. & Curiel, D.T. Genetic Targeting of an adenovirus vector via replacement of the fiber protein with the phage T4 fibritin. J. Virol.75, 4176–4183 (2001). ArticleCAS Google Scholar
Wu, P. et al. Mutational analysis of the adeno-associated virus type 2 (AAV2) capsid gene and construction of AAV2 vectors with altered tropism. J. Virol.74, 8635–8647 (2000). ArticleCAS Google Scholar
Kirn, D., Martuza, R.L. & Zwiebel, J. Replication-selective virotherapy for cancer: biological principles, risk management and future directions. Nat. Med.7, 781–787 (2001). ArticleCAS Google Scholar
Alemany, R., Balague, C. & Curiel, D.T. Replicative adenoviruses for cancer therapy. Nat. Biotechnol.18, 723–727 (2000). ArticleCAS Google Scholar
Takeuchi, Y. et al. Sensitization of cells and retroviruses to human serum by (α1-3) galactosyltransferase. Nature379, 85–88 (1996). ArticleCAS Google Scholar
Chirmule, N. et al. Readministration of adenovirus vector in nonhuman primate lungs by blockade of CD40–CD40 ligand interactions. J. Virol.74, 3345–3352 (2000). ArticleCAS Google Scholar
Paillard, F. Circumventing adenovirus immune response to achieve long-term correction of genetic diseases. Hum. Gene Ther.9, 454–456 (1998). CASPubMed Google Scholar
Pizzato, M., Marlow, S.A., Blair, E.D. & Takeuchi, Y. Initial binding of murine leukemia virus particles to cells does not require specific Env-receptor interaction. J. Virol.73, 8599–8611 (1999). CASPubMedPubMed Central Google Scholar
Alemany, R., Suzuki, K. & Curiel, D.T. Blood clearance rates of adenovirus type 5 in mice. J. Gen. Virol.81(Pt 11), 2605–2609 (2000). ArticleCAS Google Scholar
Griffiths, L. et al. The macrophage—a novel system to deliver gene therapy to pathological hypoxia. Gene Ther.7, 255–262 (2000). ArticleCAS Google Scholar
Carta, L. et al. Engineering of macrophages to produce IFN-γ in response to hypoxia. J. Immunol.166, 5374–5380 (2001). ArticleCAS Google Scholar
Pastorino, S., Massazza, S., Cilli, M., Varesio, L. & Bosco, M.C. Generation of high-titer retroviral vector-producing macrophages as vehicles for in vivo gene transfer. Gene Ther.8, 431–441 (2001). ArticleCAS Google Scholar
Rosenberg, S.A. Adoptive immunotherapy of cancer: accomplishments and prospects. Cancer Treat. Rep.68, 233–255 (1984). CASPubMed Google Scholar
Ioannides, C.G. & Whiteside, T.L. T cell recognition of human tumors: implications for molecular immunotherapy of cancer. Clin. Immunol. Immunopathol.66, 91–106 (1993). ArticleCAS Google Scholar
Melief, C.J. Tumor eradication by adoptive transfer of cytotoxic T lymphocytes. Adv. Cancer Res.58, 143–175 (1992). ArticleCAS Google Scholar
Whiteside, T.L. Monitoring of antigen-specific cytolytic T lymphocytes in cancer patients receiving immunotherapy. Clin. Diag. Lab. Immunol.7, 327–332 (2000). CAS Google Scholar
Yee, C. et al. Melanocyte destruction after antigen-specific immunotherapy of melanoma: direct evidence of T cell-mediated vitiligo. J. Exp. Med.192, 1637–1644 (2000). ArticleCAS Google Scholar
Yee, C., Riddell, S.R. & Greenberg, P.D. In vivo tracking of tumor-specific T cells. Curr. Opin. Immunol.13, 141–146 (2001). ArticleCAS Google Scholar
Di Carlo, E. et al. The intriguing role of polymorphonuclear neutrophils in antitumor reactions. Blood97, 339–345 (2001). ArticleCAS Google Scholar
Rosenberg, S.A. The immunotherapy and gene therapy of cancer. J. Clin. Onc.10, 180–199 (1992). ArticleCAS Google Scholar
Gomez-Navarro, J. et al. Genetically modified CD34+ cells as cellular vehicles for gene delivery into areas of angiogenesis in a rhesus model. Gene Ther.7, 43–52 (2000). ArticleCAS Google Scholar
Asahara, T. et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ. Res.85, 221–228 (1999). ArticleCAS Google Scholar
Boon, T. & van der Bruggen, P. Human tumor antigens recognized by T lymphocytes. J. Exp. Med.183, 725–729 (1996). ArticleCAS Google Scholar
Altenschmidt, U., Klundt, E. & Groner, B. Adoptive transfer of _in vitro_-targeted, activated T lymphocytes results in total tumor regression. J. Immunol.159, 5509–5515 (1997). CAS Google Scholar
Bolhuis, R.L. & Gratama, J.W. Genetic re-targeting of T lymphocyte specificity. Gene Ther.5, 1153–1155 (1998). ArticleCAS Google Scholar
Brocker, T., Riedinger, M. & Karjalainen, K. Redirecting the complete T cell receptor/CD3 signaling machinery towards native antigen via modified T cell receptor. Eur. J. Immunol.26, 1770–1774 (1996). ArticleCAS Google Scholar
Eshhar, Z., Waks, T., Gross, G. & Schindler, D.G. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the γ or ζ subunits of the immunoglobulin and T-cell receptors. Proc. Natl. Acad. Sci. USA90, 720–724 (1993). ArticleCAS Google Scholar
Hombach, A. et al. A chimeric receptor that selectively targets membrane-bound carcinoembryonic antigen (mCEA) in the presence of soluble CEA. Gene Ther.6, 300–304 (1999). ArticleCAS Google Scholar
Weijtens, M.E., Willemsen, R.A., Valerio, D., Stam, K. & Bolhuis, R.L. Single chain Ig/γ gene-redirected human T lymphocytes produce cytokines, specifically lyse tumor cells, and recycle lytic capacity. J. Immunol.157, 836–843 (1996). CAS Google Scholar
Alvarez-Vallina, L., Agha-Mohammadi, S., Hawkins, R.E. & Russell, S.J. Pharmacological control of antigen responsiveness in genetically modified T lymphocytes. J. Immunol.159, 5889–5895 (1997). CASPubMed Google Scholar
Alvarez-Vallina, L., Yanez, R., Blanco, B., Gil, M. & Russell, S.J. Pharmacologic suppression of target cell recognition by engineered T cells expressing chimeric T-cell receptors. Cancer Gene Ther.7, 526–529 (2000). ArticleCAS Google Scholar
DiDonato, J. et al. Mapping of the inducible IκB phosphorylation sites that signal its ubiquitination and degradation. Mol. Cell Biol.16, 1295–1304 (1996). ArticleCAS Google Scholar
Sen, J. et al. Expression and induction of nuclear factor-κB-related proteins in thymocytes. J. Immunol.154, 3213–3221 (1995). CASPubMed Google Scholar
Trushin, S.A., Pennington, K.N., Algeciras-Schimnich, A. & Paya, C.V. Protein kinase C and calcineurin synergize to activate IκB kinase and NF-κB in T lymphocytes. J. Biol. Chem.274, 22923–22931 (1999). ArticleCAS Google Scholar
Hollander, G.A. On the stochastic regulation of interleukin-2 transcription. Semin. Immunol.11, 357–367 (1999). ArticleCAS Google Scholar
Jain, J., Loh, C. & Rao, A. Transcriptional regulation of the IL-2 gene. Curr. Opin. Immunol.7, 333–342 (1995). ArticleCAS Google Scholar
Cantrell, D. T cell antigen receptor signal transduction pathways. Annu. Rev. Immunol.14, 259–274 (1996). ArticleCAS Google Scholar
Beg, A.A. et al. IκB interacts with the nuclear localization sequences of the subunits of NF-κB: a mechanism for cytoplasmic retention. Genes Dev.6, 1899–1913 (1992). ArticleCAS Google Scholar
Finzi, D. et al. Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science278, 1295–1300 (1997). ArticleCAS Google Scholar
McElhinny, J.A. et al. Regulation of IκB α and p105 in monocytes and macrophages persistently infected with human immunodeficiency virus. J. Virol.69, 1500–1509 (1995). CASPubMedPubMed Central Google Scholar
Duisit, G., Salvetti, A., Moullier, P. & Cosset, F.L. Functional characterization of adenoviral/retroviral chimeric vectors and their use for efficient screening of retroviral producer cell lines. Hum. Gene Ther.10, 189–200 (1999). ArticleCAS Google Scholar
Morgenstern, J.P. & Land, H. Advanced mammalian gene transfer: high titre retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line. Nucleic Acids Res.18, 3587–3596 (1990). ArticleCAS Google Scholar
Diaz, R.M., Eisen, T., Hart, I.R. & Vile, R.G. Exchange of viral promoter/enhancer elements with heterologous regulatory sequences generates targeted hybrid long terminal repeat vectors for gene therapy of melanoma. J. Virol.72, 789–795 (1998). CASPubMedPubMed Central Google Scholar
Emiliusen, L. et al. A transcriptional feedback loop for tissue-specific expression of highly cytotoxic genes which incorporates an immunostimulatory component. Gene Ther.8, 987–998 (2001). ArticleCAS Google Scholar
Richards, C.A., Austin, E.A. & Huber, B.E. Transcriptional regulatory sequences of carcinoembryonic antigen: identification and use with cytosine deaminase for tumor-specific gene therapy. Hum. Gene Ther.6, 881–893 (1995). ArticleCAS Google Scholar
Wagner, M.J., Sharp, J.A. & Summers, W.C. Nucleotide sequence of the thymidine kinase gene of herpes simplex virus type 1. Proc. Natl. Acad. Sci. USA78, 1441–1445 (1981). ArticleCAS Google Scholar
Vile, R.G., Nelson, J.A., Castleden, S., Chong, H. & Hart, I.R. Systemic gene therapy of murine melanoma using tissue-specific expression of the HSVtk gene involves an immune component. Cancer Res.54, 6228–6234 (1994). CASPubMed Google Scholar
Freeman, S.M. et al. The “bystander effect”: tumor regression when a fraction of the tumor mass is genetically modified. Cancer Res.53, 5274–5283 (1993). CASPubMed Google Scholar
Alvarez-Vallina, L. & Russell, S. Efficient discrimination between different densities of target antigen by tetracycline-regulatable T bodies. Hum. Gene Ther.10, 559–563 (1999). ArticleCAS Google Scholar
Patel, S.D. et al. Impact of chimeric immune receptor extracellular protein domains on T cell function. Gene Ther.6, 412–419 (1999). ArticleCAS Google Scholar
Miller, D.G., Adam, M.A. & Miller, A.D. Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection. Mol. Cell. Biol.10, 4239–4242 (1990). ArticleCAS Google Scholar
Culver, K.W. et al. In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors. Science256, 1550–1552 (1992). ArticleCAS Google Scholar
Naldini, L. et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science272, 263–266 (1996). ArticleCAS Google Scholar
Zufferey, R., Nagy, D., Mandel, R.J., Naldini, L. & Trono, D. Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat. Biotechnol.15, 871–875 (1997). ArticleCAS Google Scholar