ICE/CED3-like Proteases as Therapeutic Targets for the Control of Inappropriate Apoptosis (original) (raw)
References
Kerr, J.R., Wyllie, A.H. and Currie, A.R. 1972. Apoptosis: a basic biological phe-nomenom with wide-ranging implications in tissue kinetics. Br. J. Cancer26: 239–257. ArticleCASPubMedPubMed Central Google Scholar
Bursch, W., Oberhammer, F. and Schulte-Hermann, R. 1992. Cell death by apoptosis and its protective role against disease. Trends Pharm. Sci.13: 245–251. CASPubMed Google Scholar
Carson, D.A. and Ribiero, J.M. 1993. Apoptosis and disease. Lancet341: 1251–1254. CASPubMed Google Scholar
Barr, P.J. and Tomei, L.D. 1994. Apoptosis and its role in human disease. Bio/Technology12: 487–493. CAS Google Scholar
Häcker, G. and Vaux, D.L. 1995. The medical significance of physiological cell death. Medicinal Res. Rev.15: 299–311. Google Scholar
Thompson, C.B. 1995. Apoptosis in the pathogenesis and treatment of disease. Science267: 1456–1462. CASPubMed Google Scholar
Su, J.H., Anderson, A.J., Cummings, B.J. and Cotman, C.W. 1994. Immunohistochemical evidence for apoptosis in Alzheimer's disease. Neuroreport5: 2529–2533. ArticleCASPubMed Google Scholar
Lassmann, H., Bancher, C., Breitschopf, H., Wegiel, J., Bobinski, M., Jellinger, K. and Wisniewski, H.M. 1995. Cell death in Alzheimer's disease evaluated by DNA fragmentation in situ . Ada Neuropathol.89: 35–41. CAS Google Scholar
Smale, G., Nichols, N.R., Brady, D.R., Finch, C.E. and Horton, W.E. 1995. Evidence for apoptotic cell death in Alzheimer's disease. Exp. Neurol.133: 225–230. CASPubMed Google Scholar
Forloni, G., Chiesa, T., Smiroldo, S., Verga, L., Salmona, M., Tagliavini, T. and Angeretti, N. 1993. Apoptosis mediated neurotoxicity induced by chronic application of 13 amyloid fragment 25-35. Neuroreport4: 523–526. CASPubMed Google Scholar
Loo, D.T., Copani, A., Pike, C.J., Whittemore, E.R., Walencewicz, A.J. and Cotman, C.W. 1993. Apoptosis is induced by B-amyloid in cultured central nervous system neurons. Proc. Natl. Acad. Sci. USA90: 7951–7955. CASPubMedPubMed Central Google Scholar
Roy, N., Mahadevan, M.S., McLean, M., Shutler, G., Yaraghi, Z., Farahani, R., Baird, S., Besner-Johnston, A., Lefebvre, C., Kang, X., Salih, M., Aubry, H., Ramai, K., Guan, X., loannou, P., Crawford, T.O., de Jong, P.J., Surh, L., Ikeda, J.E., Korneluk, R.G., and Mackenzie, A., 1995. The gene for neuronal apoptosis inhibitory protein is partially deleted in individuals with spinal muscular atrophy. Cell80: 167–178. CASPubMed Google Scholar
Liston, P., Roy, N., Tamai, K., Lefebvre, C., Baird, S., Cherton-Horvat, G., Farahani, R., McLean, M., Ikeda, J.-E., MacKenzie, A. and Korneluk, R.G. 1996. Supression of apoptosis in mammalian cells by NAIP and a related family of IAP genes. Nature379: 349–353. CASPubMed Google Scholar
Zeitlin, S., Liu, J.-R., Chapman, D.L., Papaioannou, V.E. and Efstratiadis, A. 1995. Increased apoptosis and early embryonic lethality in mice nullizygous for the Huntington's disease gene homologue. Nature Genetics11: 155–163. CASPubMed Google Scholar
Portera-Cailliau, C., Hedreen, J.C., Price, D.L. and Koliatsos, V.E. 1995. Evidence for apoptotic cell death in Huntington disease and exocitotoxic animal models. J. Neurosci.15: 3775–3787. CASPubMedPubMed Central Google Scholar
Thomas, L.B., Gates, D.J., Richfield, E.K., O'Brien, T.R., Schweitzer, J.B. and Steindler, D.A. 1995. DNA end labeling (TUNEL) in Huntington's disease and other neurpathological conditions. Exp. Neurol.133: 265–272. CASPubMed Google Scholar
Carston, D.A. and Lois, A. 1995. Cancer progression and p53. Lancet346: 1009–1011. Google Scholar
Evan, G.I., Brown, L., Whyte, M. and Harrington, E. 1995. Apoptosis and the cell cycle. Cum Biol.7: 825–834. CAS Google Scholar
Enoch, T. and Norbury, C. 1995. Cellular responses to DNA damage: cell-cycle checkpoints, apoptosis and the roles of p53 and ATM. Trends Biol. Sci.20: 426–430. CAS Google Scholar
Reed, J.C. 1994. Bcl-2 and the regulation of programmed cell death. J. Cell Biol.124: 1–6. CASPubMed Google Scholar
Hockenbery, D.M. 1994. bcl-2 in cancer, development and apoptosis. J. Cell Sci.18: 51–55. CAS Google Scholar
Hawkins, C.J. and Vaux, D.L. 1994. Analysis of the role of bcl-2 in apoptosis. Immunol. Rev.142: 127–139. CASPubMed Google Scholar
Korsmeyer, S.J. 1995. Regulators of cell death. Trends Genet.11: 101–105. CASPubMed Google Scholar
Watanabe-Fukunaga, R., Brannan, C.I., Copeland, N.G., Jenkins, N.A. and Nagata, S. 1992. Lymphoproliferative disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature356: 314–317. CASPubMed Google Scholar
Takahashi, T., Tanaka, M., Brannan, C.I., Jenkins, N.A., Copeland, N.G., Suda, T. and Nagata, S. 1994. Generalized lymphoproliferative disease in mice caused by a point mutation in the Fas ligand. Cell76: 969–976. CASPubMed Google Scholar
Rose, L.M., Latchman, D.S. and Isenberg, D.A. 1994. Bcl-2 and Fas, molecules which influence apoptosis. A possible role in systemic lupus erythematosus? Autoimmunity17: 271–278. CASPubMed Google Scholar
Tan, E.M. 1994. Autoimmunity and apoptosis. J. Exp. Med.179: 1083–1086. CASPubMed Google Scholar
Casciola-Rosen, L.A., Anhalt, G. and Rosen, A. 1994. Autoantigens targeted in systemic lupus erythematosus are clustered in two populations of surface structures on apoptotic keratinocytes. J. Exp. Med.179: 1317–1330. CASPubMed Google Scholar
Casciola-Rosen, L.A., Anhalt, G. and Rosen, A. 1995. DNA-dependent protein kinase is one of a subset of autoantigens specifically cleaved early during apoptosis. J. Exp. Med.182: 1625–1634. CASPubMed Google Scholar
Chiou, S.-K., Tseng, C.-C., Rao, L. and White, E. 1994. Functional complementation of the adenovirus E1B 19-kilodalton protein with Bcl-2 in the inhibition of apoptosis in infected cells. J. Virol.68: 6553–6566. CASPubMedPubMed Central Google Scholar
White, E. 1995. Regulation of p53-dependent apoptosis by E1A and E1B. Curr. Topics Micro. Immun.199: 34–58. Google Scholar
Rabizadeh, S., LaCount, D.J., Friesen, P.D. and Bredesen, D.E. 1993. Expression of the baculovirus p35 gene inhibits mammalian neural cell death. J. Neurochem.61: 2318–2321. CASPubMed Google Scholar
Sugimoto, A., Friesen, P.D. and Rothman, J.H. 1994. Baculovirus p35 prevents developmentally programmed cell death and rescues a ced-9 mutan in the nema-tode Caenorhabditis elegans . EMBO J.13: 2023–2028. CASPubMedPubMed Central Google Scholar
Bimbaum, M.J., Clem, R.J. and Miller, L.K. 1994. An apoptosis-inhibiting gene from a nuclear polyhedrosis virus encoding a polypeptide with Cys/His sequence motifs. J. Virol.68: 2521–2528. Google Scholar
Clem, R.J. and Miller, L.K. 1994. Control of programmed cell death by the baculovirus genes p35 and iap. Molec. Cell. Biol.14: 5212–5222. CASPubMedPubMed Central Google Scholar
Ellis, R.E., Yuan, J. and Horvitz, H.R. Mechanisms and functions of cell death. Annu. Rev. Cell. Biol.7: 663–698. 1991. CASPubMed Google Scholar
Yuan, J., Shaham, S., Ledoux, S., Ellis, J.M. and Horvitz, J.R., 1993. The elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 1β-converting enzyme. Cell75: 641–652. CASPubMed Google Scholar
Miura, M., Zhu, H., Rotello, R., Hartwieg, E.A. and Yuan, J. 1993. Induction of apoptosis in fibroblasts by IL-113-converting enzyme, a mammalian homolog of the C. elegans cell death gene ced-3. Cell78: 653–660. Google Scholar
Thornberry, N.A., Bull, H.G., Calaycay, J.R., Chapman, K.T., Howard, A.D., Kostura, M.J., Miller, D.K., Molineaux, S.M., Weidner, J.R., Aunins, J., Elliston, K.O., Ayala, J.M., Casano, F.J., Chin, J., Ding, G.J.-R., Egger, L.A., Gaffney, E.P., Limjuco, G., Palyha, O.C., Raju, S.M., Rolando, A.M., Salley, J.P., Yamin, T.-T., Lee, T.D., Shively, J.E., MacCross, M., Mumford, R.A., Schmidt, J.A. and Tocci, M.J. 1992. A novel heterodimeric cysteine protease is required for inter-leukin-1β processing in monocytes. Nature356: 768–774. CASPubMed Google Scholar
Cerretti, D.P., Kozlosky, C.J., Mosley, B., Nelson, N., Van Ness, K., Greenstreet, T.A., March, C.J., Kronheim, S.R., Druck, T., Cannizzaro, L.A., Huebner, K. and Black, R.A. 1992. Molecular cloning of the interleukin-1β converting enzyme. Science256: 97–100. CASPubMed Google Scholar
Li, P., Allen, H., Banerjee, S., Franklin, S., Herzog, L., Johnston, C., McDowell, J., Paskind, M., Rodman, L., Salfeld, J., Towne, E., Tracey, D., Wardwell, S., Wei, R.-Y., Wong, W., Kamen, R. and Seshadri, T. 1995. Mice deficient in IL-1β-converting enzyme are defective in production of mature IL-1β and resistant to endotoxic shock. Cell80: 401–411. CASPubMed Google Scholar
Kuida, K., Lippke, J.A., Ku, G., Harding, M.W., Livingston, D.J., Su, M.S.-S. and Flavell, R.A. 1995. Altered cytokine export and apoptosis in mice deficient in interleukin-1β converting enzyme. Science267: 2000–2003. CASPubMed Google Scholar
Enari, M., Hug, H. and Nagata, S. 1995. Involvement of an ICE-like protease in Fas-mediated apoptosis. Nature375: 78–81. CASPubMed Google Scholar
Los, M. Van de Craen, M., Penning, L.C., Schenk, H., Westendorp, M., Baeuerle, P.A., Dröge, W., Krammer, P.H., Fiers, W. and Schulze-Osthoff, K. 1995. Requirement of an ICE/CED-3 protease for Fas/APO-1-mediated apoptosis. Nature375: 81–83. CASPubMed Google Scholar
Kaufmann, S.H., Desnoyers, S., Ottaviano, Y., Davidson, N.E. and Poirier, G.G. 1993. Specific proteolytic cleavage of poly(ADP-ribose) polymerase: an early marker of chemotherapy-induced apoptosis. Cancer Res.53: 3976–3985. CASPubMed Google Scholar
Lazebnik, Y.A., Kaufmann, S.H., Desnoyers, S., Poirier, G.G. and Eamshaw, W.C. 1994. Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature371: 346–347. CASPubMed Google Scholar
Casciola-Rosen, L.A., Miller, D.K., Anhalt, G.J. and Rosen, A. 1994. Specific cleavage of the 70-kDa protein component of the U1 small nuclear ribonucleo-protein is a characteristic biochemical feature of apoptotic cell death. J. Biol. Chem.269: 30757–30760. CASPubMed Google Scholar
Casciola-Rosen, L., Nicholson, D.W., Chong, K.R., Rowan, K.R., Thornberry, N.A., Miller, D.K. and Rosen, A. 1996. Apopain/CPP32 cleaves proteins that are essential for cellular repair: a fundamental principle of apoptotic death. J. Exp. Med. In press.
Martin, S.J., O'Brien, G.A., Nishioka, W.K., McGahon, A.J., Mahboubi, A., Saido, T.C. and Green, D.R. 1995. Proteolysis of fodrin (non-erythroid spectrin) during apoptosis. J. Biol. Chem.270: 6425–6428. CASPubMed Google Scholar
Lazebnik, Y.A., Takahashi, A., Moir, R.D., Goldman, R.D., Poirier, G.G., Kaufmann, S.H. and Earnshaw, W.C. 1995. Studies of the lamin proteinase reveal multiple parallel biochemical pathways during apoptotic execution. Proc. Natl. Acad. Sci. USA92: 9042–9046. CASPubMedPubMed Central Google Scholar
Brancolini, C., Benedetti, M. and Schneider, C. 1995. Microfilament reorganization during apoptosis: the role of Gas2, a possible substrate for ICE-like proteases. EMBO J.14: 5179–5190. CASPubMedPubMed Central Google Scholar
Mashima, T., Naito, M., Fujita, N., Noguchi, K. and Tsuruo, T. 1995. Identification of actin as a substrate of ICE and an ICE-like protease and involvement of an ICE-like protease but not ICE in VP-16-induced U937 apoptosis. Biochem. Biophys. Res. Commun.217: 1185–1192. CASPubMed Google Scholar
Wang, X., Pai, J.-T., Wiedenfeld, E.A., Medina, J.C., Slaughter, C.A., Goldstein, J.L. and Brown, M.S. 1995. Purification of an interleukin-1β converting enzyme-related cysteine protease that cleaves sterol regulatory element-binding proteins between the leucine zipper and transmembrane domains. J. Biol. Chem.270: 18044–18050. CASPubMed Google Scholar
Emoto, Y., Manome, Y., Meinhardt, G., Kisaki, H., Kharbanda, S., Robertson, M., Ghayur, T., Wong, W.W., Kamen, R., Weichselbaum, R. and Kufe, D. 1995. Proteolytic activation of protein kinase C d by an ICE-like protease in apoptotic cells. EMBO J.14: 6148–6156. CASPubMedPubMed Central Google Scholar
Munday, N.A., Vallancourt, J.P., Ali, A., Casano, R.J., Miller, D.K., Molineaux, S.M., Yamin, T.-T., Yu, V.L. and Nicholson, D.W. 1995. Molecular cloning and pro-apoptotic activity of ICErel-ll and ICErel-lll, members of the ICE/CED-3 family of cysteine proteinases. J. Biol. Chem.270: 15870–15876. CASPubMed Google Scholar
Faucheu, C., Diu, A., Chan, A.W.E., Blanchet, A.-M., Miossec, C., Herve, F., Collard-Dutilleul, V., Gu, Y., Aldape, R.A., Lippke, J.A., Rocher, C., Su, M.S.-S., Livingston, D.J., Hercend, T. and Lalanne, J.-L. 1995. A novel human protease similar to the interleukin-1β converting enzyme induces apoptosis in transfected cells. EMBO J.14: 1914–1922. CASPubMedPubMed Central Google Scholar
Kamens, J., Paskind, M., Hugunin, M., Talanian, R.V., Allen, H., Banach, D., Bump, N., Hackett, M., Johnston, C.G., Li, P., Mankovich, J.A., Terranova, M. and Ghayur, T. 1995. Identification and characterization of ICH-2, a novel member of the interleukin-1β-converting enzyme family of cysteine proteases. J. Biol. Chem.270: 15250–15256. CASPubMed Google Scholar
Kumar, S., Tomooka, Y. and Noda, M. 1992. Identification of a set of genes with developmentally down-regulated expression in the mouse brain. Biochem. Biophys. Res. Commun.185: 1155–1161. CASPubMed Google Scholar
Kumar, S., Kinoshita, M., Noda, M., Copeland, N.G. and Jenkins, N.A. 1994. Induction of apoptosis by mouse Nedd2 gene encoding a protein similar to the C. elegans cell death gene ced-3 and mammalian IL-1 β-converting enzyme. Genes and Develop.8: 1613–1626. CAS Google Scholar
Wang, L., Miura, M., Bergeron, L., Zhu, J. and Yuan, J. . 1994. lch-1, an ICE/CED-3-related gene, encodes both positive and negative regulators of programmed cell death. Cell78: 739–750. CASPubMed Google Scholar
Femandes-Alnemri, T., Litwack, G. and Alnemri, E.S. 1994. CPP32, a novel human apoptotic protein with homology to Caenorhabditis elegans cell death protein CED-3 and mammalian interleukin-1 1β-converting enzyme. J. Biol. Chem.269: 30761–30764. Google Scholar
Fernandes-Alnemri, T., Litwack, G. and Alnemri, E.S., 1995. a new member of the apoptotic CED-3/ICE cysteine protease gene family. Cancer Res.55: 2737–2742. CASPubMed Google Scholar
Fernandes-Alnemri, T., Takahashi, A., Armstrong, R., Krebs, J., Fritz, L., Tomaselli, K.J., Wang, L., Yu, Z., Croce, C.M., Salveson, G., Earnshaw, W.C., Litwack, G. and Alnemri, E.S. 1995. Mch3, a novel human apoptotic cysteine protease highly related to CPP32. Cancer Res.55: 6045–6052. CASPubMed Google Scholar
Duan, H., Chinnaiyan, A.M., Hudson, P.L., Wing, J.P., He, W.-W. and Dixit, V.M. 1996. ICE-LAP3, a novel mammalian homolog of the Caenorhabditis elegans cell death protein CED-3 is activated during Fas- and tumor necrosis factor-induced apoptosis. J. Biol. Chem. In press
Nicholson, D.W., Ali, A., Thornberry, N.A., Vaillancourt, J.P., Ding, C.K., Gallant, M., Gareau, Y., Griffin, P.R., Labelle, M., Lazebnik, Y.A., Munday, N.A., Raju, A.M., Smulson, M.E., Yamin, T.-T., Yu, V.L. and Miller, D.K. 1995. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature376: 37–43. CASPubMed Google Scholar
Tewari, M., Quan, L.T., O'Rourke, K., Desnoyers, S., Zeng, Z., Beidler, D.R., Poirier, G.G., Salveson, G.S. and Dixit, V.M., 1995. PP32B, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. Cell81: 801–809. CASPubMed Google Scholar
Schlegel, J., Peters, I., Orrenius, S., Miller, D.K., Thornberry, N.A., Yamin, T.-T. and Nicholson, D.W. 1996. CPP32/apopain is a key interleukin-1β converting enzyme-like protease involved in Fas-mediated apoptosis. J. Biol. Chem.271: 1841–1844. CASPubMed Google Scholar
Jacobson, M.D., Weil, M. and Raff, M.C. 1996. Role of CED-3/ICE-family proteases in staurosporine-induced programmed cell death. J. Cell Biol. In press.
Martin, S.J., Amarante-Mendes, G.P., Shi, L., Chuang, T.-H., Casiano, C.A., O'Brien, G.A., Fitzgerald, P., Tan, E.M., Bokoch, G.M., Greenberg, A.H. and Green, D.R. 1996. The cytotoxic cell protease granzyme B initiates apoptosis in a cell-free system by proteolytic processing and activation of the ICE/CED-3-family protease, CPP32. EMBO J. In press.
Darmon, A.J., Nicholson, D.W. and Bleackley, R.C. 1995. Activation of the apoptotic protease CPP32 by cytotoxic T-cell-derived granzyme B. Nature377: 446–448. CASPubMed Google Scholar
Darmon, A.J., Ehrman, N., Caputo, A., Fujinaga, J. and Bleackley, R.C. 1994. The cytotoxic T cell proteinase granzyme B does not activate interleukin-1 β-converting enzyme. J. Biol. Chem.269: 32043–32046. CASPubMed Google Scholar
Kumar, S. 1995. Inhibition of apoptosis by the expression of antisense Nedd2. FEBS Lett.368: 69–72. CASPubMed Google Scholar
Komiyama, T., Ray, C.A., Pickup, D.J., Howard, A.D., Thornberry, N.A., Peterson, E.P. and Salvesen, G. 1994. Inhibition of interleukin-1β converting enzyme by the cowpox virus serpin CrmA. An example of cross-class inhibition. J. Biol. Chem.269: 19331–19337. CASPubMed Google Scholar
Gagliardini, V., Fernandez, P.-A., Lee, R.K.K., Drexier, H.C.A., Rotello, R.J., Fishman, M.C. and Yuan, J. 1994. Prevention of vertebrate neuronal death by the crmA gene. Science263: 826–828. CASPubMed Google Scholar
Memon, S.A., Moreno, M.B., Petrak, D. and Zacharchuk, C.M. 1995. Bcl-2 blocks glucocorticoid- but not Fas- or activation-induced apoptosis in a T cell hybridoma. J. Immunol.155: 4644–4652. CASPubMed Google Scholar
Tewari, M. and Dixit, V.M. 1995. Fas- and tumor necrosis factor-induced apoptosis is inhibited by the poxvirus crmA gene product. J. Biol. Chem.270: 3255–3260. CASPubMed Google Scholar
Miura, M., Friedlander, R.M. and Yuan, J. 1995. Tumor necrosis factor-induced apoptosis is mediated by a CrmA-sensitive cell death pathway. Proc. Natl. Acad. Sci. USA92: 8318–8322. CASPubMedPubMed Central Google Scholar
Tewari, M., Telford, W.G., Miller, R.A. and Dixit, V.M., 1995. CrmA, a poxvirus-encoded serpin, inhibits cytotoxic T-lymphocyte-mediated apoptosis. J. Biol. Chem.270: 22705–22708. CASPubMed Google Scholar
Xue, D. and Horvitz, H.R. 1995. Inhibition of the Caenorhabditis elegans cell-death protease CED-3 by a CED-3 cleavage site in baculovirus p35 protein. Nature377: 248–251. CASPubMed Google Scholar
Bump, N.J., Hackett, M., Hugunin, M., Seshagiri, S., Brady, K., Chen, P., Ferenz, C., Franklin, S., Ghayur, T., Li, P., Licari, P., Mankovich, J., Shi, L., Greenberg, A.H., Miller, L.K. and Wong, W.W. 1995. Inhibition of ICE family proteases by baculovirus antiapoptotic protein p35. Science269: 1885–1888. CASPubMed Google Scholar
Schlegel, J., Peters, I. and Orrenius, S. 1995. Isolation and partial characterization of a protease involved in Fas-induced apoptosis. FEBS Lett.364: 139–142. CASPubMed Google Scholar
Milligan, C.E., Prevette, D., Yaginuma, H., Homma, S., Cardwell, C., Fritz, L.C., Tomaselli, K.J., Oppenheim, R.W. and Schwartz, L.M. . 1995. Peptide inhibitors of the ICE protease family arrest programmed cell death of motoneurons in vivo and in vitro . Neuron15: 385–393. CASPubMed Google Scholar
Zhu, H., Fearnhead, H.O. and Cohen, G.M., 1995. ICE-like protease is a common mediator of apoptosis induced by diverse stimuli in human monocytic THP. 1 cells. FEBS Lett.374: 303–308. CASPubMed Google Scholar
Fearnhead, H.O., Dinsdale, D. and Cohen, G.M. 1995. An interleukin-1β-converting enzyme-like protease is a common mediator of apoptosis in thymocytes. FEBS Lett.375: 283–288. CASPubMed Google Scholar
Thornberry, N.A., Miller, D.K. and Nicholson, D.W. 1995. Interleukin-1 B converting enzyme and related proteases as potential targets in inflammation and apoptosis. Perspectives in Drug Discovery and Design2: 389–399. CAS Google Scholar
Wilson, K.P., Black, J.-A.R., Thomson, J.A., Kim, E.E., Griffith, J.P., Navia, M.A., Murcko, M.A., Chambers, S.P., Aldape, R.A., Raybuck, S.A. and Livingston, D.J. 1994. Structure and mechanism of interleukin-1β converting enzyme. Nature370: 270–275. CASPubMed Google Scholar
Walker, N.P.C., Talanian, R.V., Brady, K.D., Dang, L.C., Bump, N.J., Ferenz, C.R., Franklin, S., Ghayur, T., Hackett, M.C., Hammill, L.D., Herzog, L., Hugunin, M., Houy, W., Mankovich, J.A., McGuiness, L., Orlewicz, E., Paskind, M., Pratt, C.A., Reis, P., Summani, A., Terranova, M., Welch, J.P., Xiong, L., Moller, A., Tracey, D.E., Kamen, R. and Wong, W.W. 1994. Crystal structure of the cysteine protease interleukin-1β converting enzyme: A (p20/p10)2 homodimer. Cell78: 343–352. CASPubMed Google Scholar
Thornberry, N.A. and Molineaux, S.M. 1995. Interleukin-1β converting enzyme: a novel cysteine protease required for IL-1β production and implicated in programmed cell death. Protein Sci.4: 3–12. CASPubMedPubMed Central Google Scholar
Thornberry, N.A., Peterson, E.P., Zhao, J.J., Howard, A.D., Griffin, P.R. and Chapman, K.T. 1995. Inactivation of interleukin-1β converting enzyme by peptide (acyloxy)methyl ketones. Biochemistry33: 3934–394. Google Scholar