Solubility as a Function of Protein Structure and Solvent Components (original) (raw)
References
Markussen, J., Diers, I., Hougaard, P., Langkjaer, L., Norris, K., Snel, L., Sørensen, A.R., Sørensen, E. and Voigt, H.O., 1988. Soluble, prolonged-acting insulin derivatives. III. Degree of protraction, crystallizability, and chemical stability of insulins substituted in positions A21, B13, B23, B27 and B30. Protein Engineering2: 157–166. CASPubMed Google Scholar
Dinnbier, U., Limpinsel, E., Schmid, R. and Bakker, E.P. 1988. Transient accumulation of potassium glutamate and its replacement by trehalose during adaptation of growing cells of Escherichia coli K-12 to elevated sodium chloride concentrations. Arch. Microbiol.150: 348–357. CASPubMed Google Scholar
Mitchell, R.D., Simmerman, H.K.B. and Jones, L.R. 1988. Ca2+ binding effects on protein conformation and protein interactions of canine cardiac calsequestrin. J. Biol. Chem.263: 1376–1381. CASPubMed Google Scholar
Farrell, H.M., Kumosinski, T.F., Pulaski, P. and Thompson, M.P. 1988. Calcium-induced associations of the caseins: a thermodynamic linkage approach to precipitation and resolubilization. Arch. Biochem. Biophys.265: 146–158. CASPubMed Google Scholar
Robinson, J.J. 1988. Roles for Ca2+, Mg2+ and NaCl in modulating the self-association reaction of hyalin, a major protein component of the sea-urchin extraembryonic hyaline layer. Biochem. J.256: 225–228. CASPubMedPubMed Central Google Scholar
Mahoney, R., Wilder, T. and Chang, B.S. 1988. Substrate-induced thermal stabilization of lactase (Escherichia coli) in milk. Ann. N.Y. Acad. Sci.542: 274–278. CAS Google Scholar
McCloskey, M. and Poo, M. 1984. Protein diffusion in cell membranes: some biological implications. Int. Rev. Cyt.87: 19–81. CAS Google Scholar
Wright, P.E., Dyson, H.J. and Lerner, R.A. 1988. Conformation of peptide fragments of proteins in aqueous solution: implications for initiation of protein folding. Biochemistry27: 7167–7175. ArticleCASPubMed Google Scholar
Rose, G.D., Geselowitz, A.R., Lesser, G.J., Lee, R.H. and Zehfus, M.H. 1985. Hydrophobicity of amino acid residues in globular proteins. Science229: 834–838. CASPubMed Google Scholar
Privalov, P.L. 1979. Stability of proteins, small globular proteins. Adv. Protein Chem.33: 167–241. CASPubMed Google Scholar
Jaenicke, R. 1988. Stability and self organization of proteins. Naturwissenschaften75: 604–610. CASPubMed Google Scholar
Arakawa, T. and Timasheff, S.N. 1985. Theory of protein solubility. Meth. Enzym.114: 49–77. CASPubMed Google Scholar
Kinsella, J.E. 1984. Milk proteins: physicochemical and functional properties. CRC Crit. Rev. Food Sci. Nut.21: 197–262. CAS Google Scholar
Hjelmeland, L.M. and Chrambach, A. 1984. Solubilization of functional membrane proteins. Meth. Enzym.104: 305–318. CASPubMed Google Scholar
Gekko, K. and Timasheff, S. 1981. Thermodynamic and kinetic examination of protein stabilization by glycerol. Biochemistry20: 4677–86. CASPubMed Google Scholar
Huot, J.Y. and Jolicoeur, C. 1985. Hydrophobic effects in ionic hydration and interactions, p. 417–471. In:The Chemical Physics of Solvation. Dogonadze, R.R. et al. (Eds.). Elsevier Science Publications. Amsterdam and New York. Google Scholar
Horbett, T.A. and Brash, J.L. 1987. Proteins at interfaces: current issues and future prospects. In:Proteins at Interfaces: Physiochemical and Biochemical Studies. Brash, J.L. and Horbett, T.A. (Eds.). Am. Chem. Soc, Washington, D.C., 1987. Google Scholar
Mann, D.F., Shah, K., Stein, D. and Snead, G.A. 1984. Protein hydrophobicity and stability support the thermodynamic theory of protein degradation. Biochim. Biophys. Acta788: 17–22. CASPubMed Google Scholar
van Den Oetelaar, P.J.M., de Man, B.M. and Hoenders, H.J. 1989. Protein folding and aggregation studies by isoelectric focusing across a urea gradient and isoelectric focusing in two dimensions. Biochim. Biophys. Acta995: 82–90. CASPubMed Google Scholar
Ries-Kautt, M.M. and Ducruix, A.F. 1989. Relative effectiveness of various ions on the solubility and crystal growth of lysozyme. J. Biol. Chem.264: 745–748. CASPubMed Google Scholar
Goto, Y. and Fink, A.L. 1989. Conformational states of β-lactamase: molten globule states at acidic and alkaline pH with high salt. Biochemistry28: 945–952. CASPubMed Google Scholar
Zimmerman, S.B. and Trach, S.O. 1988. Effects of macromolecular crowding on the association of E. coli ribosomal particles. Nucleic Acids Res.16: 6309–6326. CASPubMedPubMed Central Google Scholar
Ingham, K.C. 1984. Protein precipitation with polyethylene glycol. Meth. Enzym.104: 351–356. CASPubMed Google Scholar
Hanada, K., Yamato, I. and Anraku, Y. 1988. Solubilization and reconstitution of proline carrier in Escherichia coli; quantitative analysis and optimal conditions. Biochim. Biophys. Acta939: 282–288. CASPubMed Google Scholar
Brenner, S.L., Zlotnick, A. and Griffith, J.D. 1988. RecA protein self-assembly. Multiple discrete aggregation states. J. Mol. Biol.204: 959–972. CASPubMed Google Scholar
Schwarz, G. and Beschiaschvili, G. 1988. Kinetics of melittin self-association in aqueous solution. Biochemistry27: 7826–31. CAS Google Scholar
Zimmerle, C.T. and Frieden, C. 1988. Effect of pH on the mechanism of actin polymerization. Biochemistry27: 7766–72. CASPubMed Google Scholar
Yang, D.S.C., Sax, M., Chakrabartty, A. and Hew, C.L. 1988. Crystal structure of an antifreeze polypeptide and its mechanistic implications. Nature333: 232–237. CASPubMed Google Scholar
Richards, F.M., 1977. Areas, volumes, packing, and protein structure. Ann. Rev. Biophys. Bioeng.6: 151–176. CAS Google Scholar
Eisenberg, D., Wilcox, W. and McLachlan, A.D. 1986. Hydrophobicity and amphiphilicity in protein structure. J. Cell. Biochem.31: 11–17. CASPubMed Google Scholar
Hageman, M.J. 1988. The role of moisture in protein stability. Drug Development and Ind. Pharm.14: 2047–2070. CAS Google Scholar
Good, N.E. and Izawa, S. 1972. Hydrogen ion buffers. Meth. Enz.24: 53–68. CAS Google Scholar
Yancey, P.H., Clark, M.E., Hand, S.C., Bowlus, R.D. and Somero, G.N. 1982. Living with water stress; evolution of osmolyte systems. Science217: 1214–1222. CASPubMed Google Scholar
McPherson, A. 1982. Preparation and Analysis of Protein Crystals. John Wiley and Sons, NY. Google Scholar
Feher, G. and Kam, Z. 1985. Nucleation and growth of protein crystals: general principles and assays. Meth. Enz.114: 77–111. CAS Google Scholar
Kamoun, P.P. 1988. Denaturation of globular proteins by urea: breakdown of hydrogen or hydrophobic bonds?. TIBS15: 424–425. Google Scholar
Schellekens, H., de Reus, A., Bolhuis, R., Fountoulakis, M., Schein, C., Ecsödi, J., Nagata, S. and Weissmann, C. 1981. Comparative antiviral efficiency of leukocyte and bacterially produced human α-interferon in rhesus monkeys. Nature292: 775–776. CASPubMed Google Scholar
Arnold, F.H. 1988. Protein design for non-aqueous solvents. Protein Eng.2: 21–25. CASPubMed Google Scholar
Narita, M., Ishikawa, K., Chen, J.-Y. and Kim, Y. 1984. Prediction and improvement of protected peptide solubility in organic solvents. Int. J. Pept. Prot. Res.24: 580–587. CAS Google Scholar
Jaenicke, R. and Rudolph, R. 1989. Folding proteins, p. 191–223. In:Protein Structure a Practical Approach T.E. Creighton (Ed.). Oxford University Press, UK. Google Scholar
Rudolph, R. and Fisher, S. 1987. Verfahrung zur Renaturierung von Proteinen. Eur Patent Appl. 0241–022.
Weir, M.P. and Sparks, J. 1987. Purification and renaturation of recombinant human interleukin-2. Biochem. J.245: 85–91. CASPubMedPubMed Central Google Scholar
Marston, F.A.O. 1986. The purification of eukaryotic polypeptides synthesized in Escherichia coli . Biochem. J.240: 1–12. CASPubMedPubMed Central Google Scholar
Hochuli, E., Bannwarth, W., Döbeli, H., Gentz, R. and Stüber, D. 1988. Genetic approach to facilitate purification of recombinant proteins with a novel metal chelate adsorbent. Bio/Technology6: 1321–1325. CAS Google Scholar
Smith, D.C. and Hider, R.C. 1988. Thiol exchange catalysed refolding of small proteins utilizing solid-phase supports. Biophys. Chem.31: 21–28. CASPubMed Google Scholar
Light, A., Duda, C.T., Odorzynski, T.W. and Moore, W.G.I. 1986. Refolding of serine proteinases. J. Cell. Biochem.31: 19–26. CASPubMed Google Scholar
van Kimmenade, A., Bond, M.W., Schumacher, J.H., Laquoi, C. and Kastelein, R.A., 1988. Expression, renaturation and purification of recombinant human interleukin-4 from Escherichia coli . Eur. J. Biochem.173: 109–114. CASPubMed Google Scholar
Kühlbrandt, W. 1988. Three-dimensional crystallization of membrane proteins. Quarterly Rev. Biophysics21: 429–477. Google Scholar
Wallace, B.A., Cascio, M. and Mielke, D.L. 1986. Evaluation of methods for the prediction of membrane protein secondary structures. Proc. Natl. Acad. Sci.83: 9423–9427. CASPubMedPubMed Central Google Scholar
Furth, A.J., Bolton, H., Potter, J. and Priddle, J.D., 1984. Detergent from Proteins. Meth. Enzym.104: 318–328. CASPubMed Google Scholar
Lee, K.H., Fitton, J.E. and Wüthrich, K. 1987. Nuclear magnetic resonance investigation of the conformation of δ-haemolysin bound to dodecylphosphocholine micelles. Biochim. Biophys. Acta911: 144–153. CASPubMed Google Scholar
Maloney, P.C. and Ambudkar, S.V. 1989. Functional reconstitution of prokaryote and eukaryote membrane proteins. Arch. Biochem. Biophys.269: 1–10. CASPubMed Google Scholar
Welte, W. and Wacker, T. 1989. Protein-detergent micellar solutions for the crystallization of a membrane protein. Some general approaches and experiences with the crystallization of pigment-protem complexes from purple bacteria. In:Membrane protein crystallization. Michel, H. (Ed.). CRC Press, Inc, Boca Raton, FL. Google Scholar
YaDeau, J.T. and Blobel, G. 1989. Solubilization and characterization of yeast signal peptidase. J. Biol. Chem.264: 2928–2934. CASPubMed Google Scholar
Fargin, A., Faye, J.C., le Maire, M., Bayard, F., Potier, M. and Beauregard, G. 1988. Solubilization of a tamoxifen-binding protein. Biochem. J.256: 229–236. CASPubMedPubMed Central Google Scholar
Kline, A.D., Braun, W. and Wüthrich, K. 1988. Determination of the complete three-dimensional structure of the α-amylase inhibitor tendamistat in aqueous solution by nuclear magnetic resonance and distance geometry. J. Mol. Biol.204: 675–724. CASPubMed Google Scholar
Montelione, G.T., Wüthrich, K., Nice, E.C., Burgess, A.W. and Scheraga, H.A. 1987. Solution structure of murine epidermal growth factor: determination of the polypeptide backbone chain-fold by nuclear magnetic resonance and distance geometry. Proc. Nat. Acad. Sci.84: 5226–5230. CASPubMedPubMed Central Google Scholar
Oswald, R.E., Bogusky, M.J., Bamberger, M., Smith, R.A.G. and Dobson, C.M. 1989. Dynamics of the multidomain fibrinolytic protein urokinase from two-dimensional NMR. Nature337: 579–582. CASPubMed Google Scholar
Fesik, S.W. 1988. Isotope-edited NMR spectroscopy. Nature332: 865–866. Google Scholar
Oh, B.H., Westler, W.M., Darba, P. and Markley, J.L. 1988. Protein carbon-13 spin systems by a single two-dimensional nuclear magnetic resonance experiment. Science240: 908–911. CASPubMed Google Scholar
Senn, H., Eugster, A., Otting, G., Suter, F. and Wüthrich, K. 1987. 15N-labeled P22 c2 repressor for nuclear magnetic resonance studies of protein-DNA interactions. Eur. J. Biophys.14: 301–306. CAS Google Scholar
Markley, J.L. 1987. One- and Two-dimensional NMR spectroscopic investigations of the consequences of amino acid replacements in proteins, p. 15–33. In:Protein Engineering D.L. Oxender and C.F. Fox (Eds.). Alan R. Liss, Inc., NY. Google Scholar
Fairbrother, W.J., Hall, L., Littlechild, J.A., Walker, P.A., Watson, H.C. and Williams, R.J.P. 1988. Probing the 3-phosphoglycerate-binding site of yeast phosphoglycerate kinase using site-specific mutants and 1H nuclear magnetic resonance spectroscopy. Biochem. Soc. Proc.16: 724–725. CAS Google Scholar
Baumann, G., Frömmel, C. and Sander, C. 1989. Polarity as a criterion in protein design. Protein Eng.2: 329–334. CASPubMed Google Scholar
Richards, F.M. 1986. Protein design: are we ready?. UCLA Symp. Mol. Cell. Biol.39: 171–196. Google Scholar
Toniolo, C., Bonora, G.M., Moretto, V. and Bodanszky, M. 1985. Self-association and solubility of peptides. Int. J. Pept. Prot. Res.25: 425–430. CAS Google Scholar
Ferreira, L.C.S., Schwarz, U., Keck, W., Charlier, P., Dideberg, O. and Ghuysen, J.-M. 1988. Properties and crystallization of a genetically engineered, water-soluble derivative of penicillin-binding protein 5 of Escherichia coli K12. Eur. J. Biochem.171: 11–16. CASPubMed Google Scholar
Argos, P. 1988. An investigation of protein subunit and domain interfaces. Protein Eng.2: 101–113. CASPubMed Google Scholar
Shaw, W.V. 1987. Protein engineering. The design, synthesis and characterization of factitious proteins. Biochem. J.246: 1–17. CASPubMedPubMed Central Google Scholar
Le, H.V., Syto, R., Schwartz, J., Nagabhushan, T.L. and Trotta, P.P. 1988. Purification and properties of a novel recombinant human hybrid interferon, δ-4 α2/α1. Biochim. Biophys. Acta957: 143–151. CASPubMed Google Scholar
Zuber, H. 1988. Temperature adaptation of lactate dehydrogenase. Structural, functional and genetic aspects. Biophys. Chem.29: 171–179. CASPubMed Google Scholar
Menéndez-Arias, L. and Argos, P. 1989. Engineering protein thermal stability. Sequence statistics point to residue substitutions in α-helices. J. Mol. Biol.206: 397–406. PubMed Google Scholar
Fauchère, J., Charton, M., Kier, L.B., Verloop, A. and Pliska, V. 1988. Amino acid side chain parameters for correlation studies in biology and pharmacology. Int. J. Pept. Prot. Res.32: 269–278. Google Scholar
Wolfenden, R., Andersson, L., Cullis, P.M. and Southgate, C.C. 1981. Affinities of amino acid side chains for solvent water. Biochemistry20: 849–855. CASPubMed Google Scholar
Janin, J. 1979. Surface and inside volumes in globular proteins. Nature277: 491–492. CASPubMed Google Scholar
Nozaki, Y. and Tanford, C. 1971. The solubility of amino acids and two glycine peptides in aqueous ethanol and dioxane solutions. Establishment of a hydrophobicity scale. J. Biol. Chem.246: 2211–2217. CASPubMed Google Scholar
Knauf, M.J., Bell, D.P., Hirtzer, P., Luo, Z.-P., Young, J.D. and Katre, N.V. 1988. Relationship of effective molecular size to systemic clearance in rats of recombinant interleukin-2 chemically modified with water soluble polymers. J. Biol. Chem.263: 15064–15070. CASPubMed Google Scholar
Baillargeon, M.W. and Sonnet, P.E. 1988. Lipase modified for solubility in organic solvents. Ann. N.Y. Acad. Sci.542: 244–49. CASPubMed Google Scholar
Kikuchi, T., Nemethy, G. and Sheraga, H.A. 1988. Prediction of probable pathways of folding in globular proteins. J. Prot. Chem.7: 491–507. CAS Google Scholar
Holley, L.H. and Karplus, M. 1989. Protein secondary structure prediction with a neural network. Proc. Natl. Acad. Sci. USA86: 152–156. CASPubMedPubMed Central Google Scholar
Karplus, M. 1987. The prediction and analysis of mutant structures, p. 35–44. In:Protein Engineering D.L. Oxender and C.F. Fox (Eds.). Alan R. Liss, Inc., NY. Google Scholar
Creighton, T.E. 1988. On the relevance of non-random polypeptide conformations for protein folding. Biophys. Chem.31: 155–162. CASPubMed Google Scholar
DeGrado, W.F., Wasserman, Z.R. and Lear, J.D. 1989. Protein design, a minimalist approach. Science243: 622–628. CASPubMed Google Scholar
Kim, P.S. 1988. Passing the first milestone in protein design. Prot. Eng.2: 249–250. CAS Google Scholar
Schein, C. 1989. Production of soluble recombinant proteins in bacteria. Bio/Technology7: 1141–1149. CAS Google Scholar