Solubility as a Function of Protein Structure and Solvent Components (original) (raw)

References

  1. Markussen, J., Diers, I., Hougaard, P., Langkjaer, L., Norris, K., Snel, L., Sørensen, A.R., Sørensen, E. and Voigt, H.O., 1988. Soluble, prolonged-acting insulin derivatives. III. Degree of protraction, crystallizability, and chemical stability of insulins substituted in positions A21, B13, B23, B27 and B30. Protein Engineering 2: 157–166.
    CAS PubMed Google Scholar
  2. Dinnbier, U., Limpinsel, E., Schmid, R. and Bakker, E.P. 1988. Transient accumulation of potassium glutamate and its replacement by trehalose during adaptation of growing cells of Escherichia coli K-12 to elevated sodium chloride concentrations. Arch. Microbiol. 150: 348–357.
    CAS PubMed Google Scholar
  3. Mitchell, R.D., Simmerman, H.K.B. and Jones, L.R. 1988. Ca2+ binding effects on protein conformation and protein interactions of canine cardiac calsequestrin. J. Biol. Chem. 263: 1376–1381.
    CAS PubMed Google Scholar
  4. Farrell, H.M., Kumosinski, T.F., Pulaski, P. and Thompson, M.P. 1988. Calcium-induced associations of the caseins: a thermodynamic linkage approach to precipitation and resolubilization. Arch. Biochem. Biophys. 265: 146–158.
    CAS PubMed Google Scholar
  5. Robinson, J.J. 1988. Roles for Ca2+, Mg2+ and NaCl in modulating the self-association reaction of hyalin, a major protein component of the sea-urchin extraembryonic hyaline layer. Biochem. J. 256: 225–228.
    CAS PubMed PubMed Central Google Scholar
  6. Mahoney, R., Wilder, T. and Chang, B.S. 1988. Substrate-induced thermal stabilization of lactase (Escherichia coli) in milk. Ann. N.Y. Acad. Sci. 542: 274–278.
    CAS Google Scholar
  7. McCloskey, M. and Poo, M. 1984. Protein diffusion in cell membranes: some biological implications. Int. Rev. Cyt. 87: 19–81.
    CAS Google Scholar
  8. Wright, P.E., Dyson, H.J. and Lerner, R.A. 1988. Conformation of peptide fragments of proteins in aqueous solution: implications for initiation of protein folding. Biochemistry 27: 7167–7175.
    Article CAS PubMed Google Scholar
  9. Rose, G.D., Geselowitz, A.R., Lesser, G.J., Lee, R.H. and Zehfus, M.H. 1985. Hydrophobicity of amino acid residues in globular proteins. Science 229: 834–838.
    CAS PubMed Google Scholar
  10. Privalov, P.L. 1979. Stability of proteins, small globular proteins. Adv. Protein Chem. 33: 167–241.
    CAS PubMed Google Scholar
  11. Jaenicke, R. 1988. Stability and self organization of proteins. Naturwissenschaften 75: 604–610.
    CAS PubMed Google Scholar
  12. Arakawa, T. and Timasheff, S.N. 1985. Theory of protein solubility. Meth. Enzym. 114: 49–77.
    CAS PubMed Google Scholar
  13. Kinsella, J.E. 1984. Milk proteins: physicochemical and functional properties. CRC Crit. Rev. Food Sci. Nut. 21: 197–262.
    CAS Google Scholar
  14. Hjelmeland, L.M. and Chrambach, A. 1984. Solubilization of functional membrane proteins. Meth. Enzym. 104: 305–318.
    CAS PubMed Google Scholar
  15. Gekko, K. and Timasheff, S. 1981. Thermodynamic and kinetic examination of protein stabilization by glycerol. Biochemistry 20: 4677–86.
    CAS PubMed Google Scholar
  16. Huot, J.Y. and Jolicoeur, C. 1985. Hydrophobic effects in ionic hydration and interactions, p. 417–471. In: The Chemical Physics of Solvation. Dogonadze, R.R. et al. (Eds.). Elsevier Science Publications. Amsterdam and New York.
    Google Scholar
  17. Horbett, T.A. and Brash, J.L. 1987. Proteins at interfaces: current issues and future prospects. In: Proteins at Interfaces: Physiochemical and Biochemical Studies. Brash, J.L. and Horbett, T.A. (Eds.). Am. Chem. Soc, Washington, D.C., 1987.
    Google Scholar
  18. Mann, D.F., Shah, K., Stein, D. and Snead, G.A. 1984. Protein hydrophobicity and stability support the thermodynamic theory of protein degradation. Biochim. Biophys. Acta 788: 17–22.
    CAS PubMed Google Scholar
  19. van Den Oetelaar, P.J.M., de Man, B.M. and Hoenders, H.J. 1989. Protein folding and aggregation studies by isoelectric focusing across a urea gradient and isoelectric focusing in two dimensions. Biochim. Biophys. Acta 995: 82–90.
    CAS PubMed Google Scholar
  20. Ries-Kautt, M.M. and Ducruix, A.F. 1989. Relative effectiveness of various ions on the solubility and crystal growth of lysozyme. J. Biol. Chem. 264: 745–748.
    CAS PubMed Google Scholar
  21. Goto, Y. and Fink, A.L. 1989. Conformational states of β-lactamase: molten globule states at acidic and alkaline pH with high salt. Biochemistry 28: 945–952.
    CAS PubMed Google Scholar
  22. Zimmerman, S.B. and Trach, S.O. 1988. Effects of macromolecular crowding on the association of E. coli ribosomal particles. Nucleic Acids Res. 16: 6309–6326.
    CAS PubMed PubMed Central Google Scholar
  23. Ingham, K.C. 1984. Protein precipitation with polyethylene glycol. Meth. Enzym. 104: 351–356.
    CAS PubMed Google Scholar
  24. Hanada, K., Yamato, I. and Anraku, Y. 1988. Solubilization and reconstitution of proline carrier in Escherichia coli; quantitative analysis and optimal conditions. Biochim. Biophys. Acta 939: 282–288.
    CAS PubMed Google Scholar
  25. Brenner, S.L., Zlotnick, A. and Griffith, J.D. 1988. RecA protein self-assembly. Multiple discrete aggregation states. J. Mol. Biol. 204: 959–972.
    CAS PubMed Google Scholar
  26. Schwarz, G. and Beschiaschvili, G. 1988. Kinetics of melittin self-association in aqueous solution. Biochemistry 27: 7826–31.
    CAS Google Scholar
  27. Zimmerle, C.T. and Frieden, C. 1988. Effect of pH on the mechanism of actin polymerization. Biochemistry 27: 7766–72.
    CAS PubMed Google Scholar
  28. Yang, D.S.C., Sax, M., Chakrabartty, A. and Hew, C.L. 1988. Crystal structure of an antifreeze polypeptide and its mechanistic implications. Nature 333: 232–237.
    CAS PubMed Google Scholar
  29. Richards, F.M., 1977. Areas, volumes, packing, and protein structure. Ann. Rev. Biophys. Bioeng. 6: 151–176.
    CAS Google Scholar
  30. Eisenberg, D., Wilcox, W. and McLachlan, A.D. 1986. Hydrophobicity and amphiphilicity in protein structure. J. Cell. Biochem. 31: 11–17.
    CAS PubMed Google Scholar
  31. Hageman, M.J. 1988. The role of moisture in protein stability. Drug Development and Ind. Pharm. 14: 2047–2070.
    CAS Google Scholar
  32. Good, N.E. and Izawa, S. 1972. Hydrogen ion buffers. Meth. Enz. 24: 53–68.
    CAS Google Scholar
  33. Blanchard, J.S. 1984. Buffers for enzymes. Meth. Enzym. 104: 404–414.
    CAS PubMed Google Scholar
  34. Yancey, P.H., Clark, M.E., Hand, S.C., Bowlus, R.D. and Somero, G.N. 1982. Living with water stress; evolution of osmolyte systems. Science 217: 1214–1222.
    CAS PubMed Google Scholar
  35. McPherson, A. 1982. Preparation and Analysis of Protein Crystals. John Wiley and Sons, NY.
    Google Scholar
  36. Feher, G. and Kam, Z. 1985. Nucleation and growth of protein crystals: general principles and assays. Meth. Enz. 114: 77–111.
    CAS Google Scholar
  37. Kamoun, P.P. 1988. Denaturation of globular proteins by urea: breakdown of hydrogen or hydrophobic bonds?. TIBS 15: 424–425.
    Google Scholar
  38. Schellekens, H., de Reus, A., Bolhuis, R., Fountoulakis, M., Schein, C., Ecsödi, J., Nagata, S. and Weissmann, C. 1981. Comparative antiviral efficiency of leukocyte and bacterially produced human α-interferon in rhesus monkeys. Nature 292: 775–776.
    CAS PubMed Google Scholar
  39. Arnold, F.H. 1988. Protein design for non-aqueous solvents. Protein Eng. 2: 21–25.
    CAS PubMed Google Scholar
  40. Narita, M., Ishikawa, K., Chen, J.-Y. and Kim, Y. 1984. Prediction and improvement of protected peptide solubility in organic solvents. Int. J. Pept. Prot. Res. 24: 580–587.
    CAS Google Scholar
  41. Jaenicke, R. and Rudolph, R. 1989. Folding proteins, p. 191–223. In: Protein Structure a Practical Approach T.E. Creighton (Ed.). Oxford University Press, UK.
    Google Scholar
  42. Rudolph, R. and Fisher, S. 1987. Verfahrung zur Renaturierung von Proteinen. Eur Patent Appl. 0241–022.
  43. Weir, M.P. and Sparks, J. 1987. Purification and renaturation of recombinant human interleukin-2. Biochem. J. 245: 85–91.
    CAS PubMed PubMed Central Google Scholar
  44. Marston, F.A.O. 1986. The purification of eukaryotic polypeptides synthesized in Escherichia coli . Biochem. J. 240: 1–12.
    CAS PubMed PubMed Central Google Scholar
  45. Hochuli, E., Bannwarth, W., Döbeli, H., Gentz, R. and Stüber, D. 1988. Genetic approach to facilitate purification of recombinant proteins with a novel metal chelate adsorbent. Bio/Technology 6: 1321–1325.
    CAS Google Scholar
  46. Smith, D.C. and Hider, R.C. 1988. Thiol exchange catalysed refolding of small proteins utilizing solid-phase supports. Biophys. Chem. 31: 21–28.
    CAS PubMed Google Scholar
  47. Light, A., Duda, C.T., Odorzynski, T.W. and Moore, W.G.I. 1986. Refolding of serine proteinases. J. Cell. Biochem. 31: 19–26.
    CAS PubMed Google Scholar
  48. van Kimmenade, A., Bond, M.W., Schumacher, J.H., Laquoi, C. and Kastelein, R.A., 1988. Expression, renaturation and purification of recombinant human interleukin-4 from Escherichia coli . Eur. J. Biochem. 173: 109–114.
    CAS PubMed Google Scholar
  49. Kühlbrandt, W. 1988. Three-dimensional crystallization of membrane proteins. Quarterly Rev. Biophysics 21: 429–477.
    Google Scholar
  50. Wallace, B.A., Cascio, M. and Mielke, D.L. 1986. Evaluation of methods for the prediction of membrane protein secondary structures. Proc. Natl. Acad. Sci. 83: 9423–9427.
    CAS PubMed PubMed Central Google Scholar
  51. Furth, A.J., Bolton, H., Potter, J. and Priddle, J.D., 1984. Detergent from Proteins. Meth. Enzym. 104: 318–328.
    CAS PubMed Google Scholar
  52. Lee, K.H., Fitton, J.E. and Wüthrich, K. 1987. Nuclear magnetic resonance investigation of the conformation of δ-haemolysin bound to dodecylphosphocholine micelles. Biochim. Biophys. Acta 911: 144–153.
    CAS PubMed Google Scholar
  53. Maloney, P.C. and Ambudkar, S.V. 1989. Functional reconstitution of prokaryote and eukaryote membrane proteins. Arch. Biochem. Biophys. 269: 1–10.
    CAS PubMed Google Scholar
  54. Welte, W. and Wacker, T. 1989. Protein-detergent micellar solutions for the crystallization of a membrane protein. Some general approaches and experiences with the crystallization of pigment-protem complexes from purple bacteria. In: Membrane protein crystallization. Michel, H. (Ed.). CRC Press, Inc, Boca Raton, FL.
    Google Scholar
  55. YaDeau, J.T. and Blobel, G. 1989. Solubilization and characterization of yeast signal peptidase. J. Biol. Chem. 264: 2928–2934.
    CAS PubMed Google Scholar
  56. Fargin, A., Faye, J.C., le Maire, M., Bayard, F., Potier, M. and Beauregard, G. 1988. Solubilization of a tamoxifen-binding protein. Biochem. J. 256: 229–236.
    CAS PubMed PubMed Central Google Scholar
  57. Kline, A.D., Braun, W. and Wüthrich, K. 1988. Determination of the complete three-dimensional structure of the α-amylase inhibitor tendamistat in aqueous solution by nuclear magnetic resonance and distance geometry. J. Mol. Biol. 204: 675–724.
    CAS PubMed Google Scholar
  58. Montelione, G.T., Wüthrich, K., Nice, E.C., Burgess, A.W. and Scheraga, H.A. 1987. Solution structure of murine epidermal growth factor: determination of the polypeptide backbone chain-fold by nuclear magnetic resonance and distance geometry. Proc. Nat. Acad. Sci. 84: 5226–5230.
    CAS PubMed PubMed Central Google Scholar
  59. Oswald, R.E., Bogusky, M.J., Bamberger, M., Smith, R.A.G. and Dobson, C.M. 1989. Dynamics of the multidomain fibrinolytic protein urokinase from two-dimensional NMR. Nature 337: 579–582.
    CAS PubMed Google Scholar
  60. Fesik, S.W. 1988. Isotope-edited NMR spectroscopy. Nature 332: 865–866.
    Google Scholar
  61. Oh, B.H., Westler, W.M., Darba, P. and Markley, J.L. 1988. Protein carbon-13 spin systems by a single two-dimensional nuclear magnetic resonance experiment. Science 240: 908–911.
    CAS PubMed Google Scholar
  62. Senn, H., Eugster, A., Otting, G., Suter, F. and Wüthrich, K. 1987. 15N-labeled P22 c2 repressor for nuclear magnetic resonance studies of protein-DNA interactions. Eur. J. Biophys. 14: 301–306.
    CAS Google Scholar
  63. Markley, J.L. 1987. One- and Two-dimensional NMR spectroscopic investigations of the consequences of amino acid replacements in proteins, p. 15–33. In: Protein Engineering D.L. Oxender and C.F. Fox (Eds.). Alan R. Liss, Inc., NY.
    Google Scholar
  64. Fairbrother, W.J., Hall, L., Littlechild, J.A., Walker, P.A., Watson, H.C. and Williams, R.J.P. 1988. Probing the 3-phosphoglycerate-binding site of yeast phosphoglycerate kinase using site-specific mutants and 1H nuclear magnetic resonance spectroscopy. Biochem. Soc. Proc. 16: 724–725.
    CAS Google Scholar
  65. Baumann, G., Frömmel, C. and Sander, C. 1989. Polarity as a criterion in protein design. Protein Eng. 2: 329–334.
    CAS PubMed Google Scholar
  66. Richards, F.M. 1986. Protein design: are we ready?. UCLA Symp. Mol. Cell. Biol. 39: 171–196.
    Google Scholar
  67. Toniolo, C., Bonora, G.M., Moretto, V. and Bodanszky, M. 1985. Self-association and solubility of peptides. Int. J. Pept. Prot. Res. 25: 425–430.
    CAS Google Scholar
  68. Ferreira, L.C.S., Schwarz, U., Keck, W., Charlier, P., Dideberg, O. and Ghuysen, J.-M. 1988. Properties and crystallization of a genetically engineered, water-soluble derivative of penicillin-binding protein 5 of Escherichia coli K12. Eur. J. Biochem. 171: 11–16.
    CAS PubMed Google Scholar
  69. Argos, P. 1988. An investigation of protein subunit and domain interfaces. Protein Eng. 2: 101–113.
    CAS PubMed Google Scholar
  70. Shaw, W.V. 1987. Protein engineering. The design, synthesis and characterization of factitious proteins. Biochem. J. 246: 1–17.
    CAS PubMed PubMed Central Google Scholar
  71. Le, H.V., Syto, R., Schwartz, J., Nagabhushan, T.L. and Trotta, P.P. 1988. Purification and properties of a novel recombinant human hybrid interferon, δ-4 α2/α1. Biochim. Biophys. Acta 957: 143–151.
    CAS PubMed Google Scholar
  72. Zuber, H. 1988. Temperature adaptation of lactate dehydrogenase. Structural, functional and genetic aspects. Biophys. Chem. 29: 171–179.
    CAS PubMed Google Scholar
  73. Menéndez-Arias, L. and Argos, P. 1989. Engineering protein thermal stability. Sequence statistics point to residue substitutions in α-helices. J. Mol. Biol. 206: 397–406.
    PubMed Google Scholar
  74. Fauchère, J., Charton, M., Kier, L.B., Verloop, A. and Pliska, V. 1988. Amino acid side chain parameters for correlation studies in biology and pharmacology. Int. J. Pept. Prot. Res. 32: 269–278.
    Google Scholar
  75. Wolfenden, R., Andersson, L., Cullis, P.M. and Southgate, C.C. 1981. Affinities of amino acid side chains for solvent water. Biochemistry 20: 849–855.
    CAS PubMed Google Scholar
  76. Janin, J. 1979. Surface and inside volumes in globular proteins. Nature 277: 491–492.
    CAS PubMed Google Scholar
  77. Nozaki, Y. and Tanford, C. 1971. The solubility of amino acids and two glycine peptides in aqueous ethanol and dioxane solutions. Establishment of a hydrophobicity scale. J. Biol. Chem. 246: 2211–2217.
    CAS PubMed Google Scholar
  78. Knauf, M.J., Bell, D.P., Hirtzer, P., Luo, Z.-P., Young, J.D. and Katre, N.V. 1988. Relationship of effective molecular size to systemic clearance in rats of recombinant interleukin-2 chemically modified with water soluble polymers. J. Biol. Chem. 263: 15064–15070.
    CAS PubMed Google Scholar
  79. Baillargeon, M.W. and Sonnet, P.E. 1988. Lipase modified for solubility in organic solvents. Ann. N.Y. Acad. Sci. 542: 244–49.
    CAS PubMed Google Scholar
  80. Kikuchi, T., Nemethy, G. and Sheraga, H.A. 1988. Prediction of probable pathways of folding in globular proteins. J. Prot. Chem. 7: 491–507.
    CAS Google Scholar
  81. Holley, L.H. and Karplus, M. 1989. Protein secondary structure prediction with a neural network. Proc. Natl. Acad. Sci. USA 86: 152–156.
    CAS PubMed PubMed Central Google Scholar
  82. Karplus, M. 1987. The prediction and analysis of mutant structures, p. 35–44. In: Protein Engineering D.L. Oxender and C.F. Fox (Eds.). Alan R. Liss, Inc., NY.
    Google Scholar
  83. Creighton, T.E. 1988. On the relevance of non-random polypeptide conformations for protein folding. Biophys. Chem. 31: 155–162.
    CAS PubMed Google Scholar
  84. DeGrado, W.F., Wasserman, Z.R. and Lear, J.D. 1989. Protein design, a minimalist approach. Science 243: 622–628.
    CAS PubMed Google Scholar
  85. Kim, P.S. 1988. Passing the first milestone in protein design. Prot. Eng. 2: 249–250.
    CAS Google Scholar
  86. Schein, C. 1989. Production of soluble recombinant proteins in bacteria. Bio/Technology 7: 1141–1149.
    CAS Google Scholar

Download references